期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
高斯超向量-支持向量机鉴别性语种识别系统
1
作者 梁春燕 安茂波 +2 位作者 刘振业 索宏彬 汪俊杰 《计算机工程与应用》 CSCD 2013年第2期174-176,180,共4页
支持向量机在语种识别技术中获得了广泛的研究和应用,并且达到和传统混合高斯模型相当的性能。高斯超向量-支持向量机系统将高斯混合模型与支持向量机有效地结合起来,采用高斯超向量核函数,以支持向量机作为后端分类器。重点介绍基于高... 支持向量机在语种识别技术中获得了广泛的研究和应用,并且达到和传统混合高斯模型相当的性能。高斯超向量-支持向量机系统将高斯混合模型与支持向量机有效地结合起来,采用高斯超向量核函数,以支持向量机作为后端分类器。重点介绍基于高斯超向量-支持向量机的语种识别系统,并和传统的高斯混合模型系统进行比较。在美国国家标准技术研究院2003年和2007年语种识别评测数据集上进行实验。实验结果表明,高斯超向量-支持向量机系统相对于混合高斯模型建模的方法,在长时数据上有较明显的性能优势。 展开更多
关键词 语种识别 高斯混合模型 支持向量 高斯矢量
在线阅读 下载PDF
融合GMM及SVM的特定音频事件高精度识别方法 被引量:5
2
作者 罗森林 王坤 +2 位作者 谢尔曼 潘丽敏 李金玉 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期716-722,共7页
针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别... 针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别的结果进行融合处理,以手枪、步枪、机关枪等10类以上枪声为实验数据,无需针对每种枪声生成相应的识别模板,仅需训练生成2个识别模板.实验结果表明,识别准确率达到92.71%.该方法模板数量少,不需要多次训练,算法复杂度较低,不仅便于应用而且可大幅提升识别效率. 展开更多
关键词 音频识别 高斯混合模型(gmm) 支持向量机(SVM) Mel频率倒谱系数(MFCC) 特定音频事件
在线阅读 下载PDF
区分性锚模型应用于语种识别的研究 被引量:1
3
作者 聂智良 张兴明 +1 位作者 杨镇西 张丽 《计算机工程》 CAS CSCD 2012年第3期172-175,共4页
在语种识别领域,语音所含说话人的差异会影响系统识别性能。基于此,对能够实现说话人无关的锚模型进行研究。根据其在语种识别中的应用原理,结合快速区分性训练思想,提出一种语种区分性的锚模型训练算法。实验结果表明,锚模型的引入能... 在语种识别领域,语音所含说话人的差异会影响系统识别性能。基于此,对能够实现说话人无关的锚模型进行研究。根据其在语种识别中的应用原理,结合快速区分性训练思想,提出一种语种区分性的锚模型训练算法。实验结果表明,锚模型的引入能提高系统识别性能,加入语种区分性的锚模型能进一步降低系统等错误率。 展开更多
关键词 语种识别 模型 快速区分性训练 高斯混合模型矢量 支持向量 说话人特征矢量
在线阅读 下载PDF
结合FCM聚类与SVM的火焰检测算法 被引量:11
4
作者 李庆辉 李艾华 +1 位作者 苏延召 马治明 《红外与激光工程》 EI CSCD 北大核心 2014年第5期1660-1666,共7页
针对传统视频型火焰检测算法误报率高、局限性强等问题,提出一种四步火焰检测算法。首先利用一种自适应混合高斯模型(GMM)检测视频序列中的运动目标;然后采用模糊C均值(FCM)聚类算法分割疑似火焰区域与非火区域;再提取疑似火焰区域的面... 针对传统视频型火焰检测算法误报率高、局限性强等问题,提出一种四步火焰检测算法。首先利用一种自适应混合高斯模型(GMM)检测视频序列中的运动目标;然后采用模糊C均值(FCM)聚类算法分割疑似火焰区域与非火区域;再提取疑似火焰区域的面积变化、表面不均度等时空特征参数;最后将这些特征参数输入训练好的支持向量机(SVM)分类器以识别火焰区域。实验结果表明,算法不但在提高了检测率的同时降低了误检率,而且适用范围广,是一种有效的火焰检测算法。 展开更多
关键词 火焰检测 混合高斯模型 模糊C均值聚类 支持向量
在线阅读 下载PDF
NAP序列核函数在话者识别中的应用 被引量:2
5
作者 邢玉娟 李明 《计算机工程》 CAS CSCD 北大核心 2010年第8期194-196,共3页
针对话者识别系统中特征向量不定长和交叉信道干扰等问题,提出一种基于超向量的扰动属性投影(NAP)核函数。该函数是一种新型的序列核函数,使支持向量机能在整体语音序列上分类,移除核函数空间中与话者识别无关的信道子空间信息。仿真实... 针对话者识别系统中特征向量不定长和交叉信道干扰等问题,提出一种基于超向量的扰动属性投影(NAP)核函数。该函数是一种新型的序列核函数,使支持向量机能在整体语音序列上分类,移除核函数空间中与话者识别无关的信道子空间信息。仿真实验结果表明,该函数可有效提高支持向量机的分类性能和话者识别系统的识别准确率。 展开更多
关键词 扰动属性投影 高斯混合模型向量 话者识别 支持向量
在线阅读 下载PDF
语种识别算法中GSV计算的定点仿真与实现 被引量:1
6
作者 张丽 杨镇西 吉立新 《计算机工程与设计》 CSCD 北大核心 2012年第2期679-683,共5页
基于GSV-SVM的语种识别方法是目前最为流行的语种识别方法之一,其采用基于通用背景模型GMM-UBM的GSV作为声学模型,支持向量机SVM作为区分模型。大量仿真测试结果表明,GSV在整个系统中占的运算量为80%左右,是算法硬件实现的瓶颈。鉴于此... 基于GSV-SVM的语种识别方法是目前最为流行的语种识别方法之一,其采用基于通用背景模型GMM-UBM的GSV作为声学模型,支持向量机SVM作为区分模型。大量仿真测试结果表明,GSV在整个系统中占的运算量为80%左右,是算法硬件实现的瓶颈。鉴于此,对基于GSV的硬件实现方法进行了研究,提出了一种快速GSV定点计算方法,其采用addlog运算简化对数似然函数的计算,完成了语种识别的高效定点实现。实验结果表明,该定点方法的识别率与浮点识别基本一致,满足应用要求。 展开更多
关键词 语种识别 高斯混合模型-通用背景模型 gmm矢量 定点实现 addlog运算
在线阅读 下载PDF
基于稀疏表征的话者识别 被引量:2
7
作者 吕小听 李昕 +1 位作者 屈燕琴 胡晨 《计算机工程与应用》 CSCD 2014年第20期215-217,243,共4页
近年来,随着信号的稀疏性理论越来越受到人们的关注,稀疏表征分类器也作为一种新型的分类算法被应用到话者识别系统中。该模型的基本思想是:只要超完备字典足够大,任意待测样本都能够用超完备字典进行线性表示。基于信号的稀疏性理论,... 近年来,随着信号的稀疏性理论越来越受到人们的关注,稀疏表征分类器也作为一种新型的分类算法被应用到话者识别系统中。该模型的基本思想是:只要超完备字典足够大,任意待测样本都能够用超完备字典进行线性表示。基于信号的稀疏性理论,未知话者的向量系数,即稀疏解可以通过L1范数最小化获取。超完备字典则可视为语音特征向量在高斯混合模型-通用背景模型(GMM-UBM)上进行MAP自适应而得到的大型数据库。采用稀疏表征模型作为话者辨认的分类方法,基于TIMIT语料库的实验结果表明,所采用的话者辨认方法,能够大大提高说话人识别系统的性能。 展开更多
关键词 稀疏表征 高斯混合模型(gmm)均值向量 完备字典 最大后验(MAP)算法
在线阅读 下载PDF
基于韵律特征的SVM说话人确认 被引量:2
8
作者 黄肖忠 李辉 +1 位作者 许东星 郭伟 《计算机工程与应用》 CSCD 北大核心 2011年第15期148-151,224,共5页
提出了一种基于韵律特征和SVM的文本无关说话人确认系统。采用小波分析方法,从语音信号的MFCC、F0和能量轨迹中提取出超音段韵律特征,通过实验研究三者的韵律特征在特征层的最佳互补融合,得到信号的韵律特征PMFCCFE,用韵律特征的GMM均... 提出了一种基于韵律特征和SVM的文本无关说话人确认系统。采用小波分析方法,从语音信号的MFCC、F0和能量轨迹中提取出超音段韵律特征,通过实验研究三者的韵律特征在特征层的最佳互补融合,得到信号的韵律特征PMFCCFE,用韵律特征的GMM均值超矢量作为参数训练目标话者的SVM模型,以更有效地区分目标话者和冒认话者。在NIST068side-1side数据库的实验表明,以短时倒谱参数的GMM-UBM系统为基准,超音段韵律特征的GMM-SVM系统的EER相对下降了57.9,MinDCF相对下降了41.4。 展开更多
关键词 韵律特征 高斯混合模型(gmm)矢量 支持向量 文本无关说话人确认
在线阅读 下载PDF
基于扰动属性投影的说话人确认系统
9
作者 陈伟 李辉 张琨磊 《计算机工程》 CAS CSCD 2012年第2期186-188,共3页
在说话人确认系统中,由于训练和测试语音来自不同的信道,会产生信道失配现象。为此,提出一种基于扰动属性投影的说话人确认系统。利用有信道标注信息的语音训练出高维空间映射矩阵,通过映射将自适应得到的超矢量作为SVM的输入,削弱说话... 在说话人确认系统中,由于训练和测试语音来自不同的信道,会产生信道失配现象。为此,提出一种基于扰动属性投影的说话人确认系统。利用有信道标注信息的语音训练出高维空间映射矩阵,通过映射将自适应得到的超矢量作为SVM的输入,削弱说话人特征中的信道信息。实验结果表明,该系统能降低信道失配带来的负面影响。 展开更多
关键词 支持向量 高斯混合模型矢量 失配补偿 映射矩阵 扰动属性投影
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部