期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯匹配追踪的SAR图像重构 被引量:3
1
作者 徐建平 皮亦鸣 《计算机应用研究》 CSCD 北大核心 2012年第7期2722-2724,2736,共4页
结合稀疏贝叶斯学习和压缩感知(CS)理论,提出了一种基于贝叶斯匹配追踪的SAR图像重构的新方法。该方法将SAR图像的重构过程看做是一个线性回归问题,而待重建的图像是该回归模型中的未知权值参数。利用高斯混合参数对未知权值参数赋予确... 结合稀疏贝叶斯学习和压缩感知(CS)理论,提出了一种基于贝叶斯匹配追踪的SAR图像重构的新方法。该方法将SAR图像的重构过程看做是一个线性回归问题,而待重建的图像是该回归模型中的未知权值参数。利用高斯混合参数对未知权值参数赋予确定的先验条件概率分布,用于限制权值参数的稀疏性。该方法能够得到重建图像所需要的一组具有较高后验概率密度的模型,从而实现图像在最小均方误差(MMSE)意义下的重构;对于高斯混合模型中参数未知的情况,可以采用基于EM的最大似然估计方法估计。实验结果表明,基于贝叶斯匹配追踪的SAR图像重构方法能够获得精确的重建图像,并且能够有效地保持图像的细节特征。 展开更多
关键词 压缩感知 SAR图像 高斯混合参数 贝叶斯 EM
在线阅读 下载PDF
基于示教学习和自适应力控制的机器人装配研究 被引量:6
2
作者 陈鹏飞 赵鑫 赵欢 《机电工程》 CAS 北大核心 2020年第5期559-564,571,共7页
针对柔性自动化领域的机器人装配问题,对示教学习和自适应力控制等方面进行了研究,对初始位置变化时示教搜孔、插孔时降低接触力矩波动速度和误差的策略进行了归纳,提出了利用示教学习对搜孔轨迹泛化和模糊自适应阻抗控制插孔的方法。... 针对柔性自动化领域的机器人装配问题,对示教学习和自适应力控制等方面进行了研究,对初始位置变化时示教搜孔、插孔时降低接触力矩波动速度和误差的策略进行了归纳,提出了利用示教学习对搜孔轨迹泛化和模糊自适应阻抗控制插孔的方法。首先根据是否与孔产生接触力将示教任务分为两段;接着利用了任务参数化的高斯混合模型(TP-GMM)训练并泛化第一段轨迹;最终和原示教的第二段轨迹组合为新的搜孔轨迹;采用了六自由度阻抗控制使得机器人具有柔顺性,再利用了模糊自适应策略调节阻抗控制中Z轴期望接触力,利用UR机器人对方形孔进行了装配试验验证。研究结果表明:所提出的策略在新的初始位置,仍能绕过障碍物并生成新的搜孔轨迹,无需再次示教;调节期望接触力相比其不变时,绕X轴方向力矩波动速度低,且波动误差减小了30%。 展开更多
关键词 机器人装配 示教学习 模糊自适应阻抗控制 任务参数高斯混合模型 力矩误差
在线阅读 下载PDF
序列颅脑CT图像颅腔内结构自动化提取及分割 被引量:1
3
作者 江少锋 陈武凡 +1 位作者 冯前进 杨素华 《南方医科大学学报》 CAS CSCD 北大核心 2007年第12期1805-1808,共4页
目的自动化提取和分割序列颅脑CT图像颅腔内结构。方法本研究首先利用颅脑CT的解剖学结构,基于区域生长法和形态学方法提取出序列颅脑CT颅腔内结构。然后针对应用EM(期望最大化)算法分割图像时,初始值选取难点,提出了一种改进的基于参... 目的自动化提取和分割序列颅脑CT图像颅腔内结构。方法本研究首先利用颅脑CT的解剖学结构,基于区域生长法和形态学方法提取出序列颅脑CT颅腔内结构。然后针对应用EM(期望最大化)算法分割图像时,初始值选取难点,提出了一种改进的基于参数受限高斯混合模型的EM分割算法,实现了对颅内结构的有效分割。结果实验结果表明,该算法能够实现从颅底到颅顶的所有CT图像颅腔内结构的计算机自动化提取和分割,结果准确。结论本文算法在绝大多数情况下是有效的。 展开更多
关键词 区域生长 颅脑CT分割 参数受限的高斯混合模型 EM算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部