期刊文献+
共找到398篇文章
< 1 2 20 >
每页显示 20 50 100
一种高斯反向学习粒子群优化算法 被引量:7
1
作者 占栋辉 卢厚清 +2 位作者 郝文宁 陈刚 靳大尉 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1064-1068,共5页
针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另... 针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另外算法在更新公式中引入"历史最优平均值"因子来提高算法的收敛速度.经过在8个测试函数的仿真实验中,与一些改进的粒子群算法进行比较,GOL-PSO有5个测试函数的测试效果最好,且T检验结果表明算法结果有明显提高,同时算法收敛对比分析结果表明,本文算法具有良好的全局搜索能力和较快的收敛速度. 展开更多
关键词 粒子优化 高斯学习 反向学习 智能算法
在线阅读 下载PDF
快速综合学习粒子群优化算法 被引量:3
2
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略研究
3
作者 肖义平 赵云峰 《电源学报》 北大核心 2025年第5期96-104,共9页
光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(ma... 光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(maximum power point tracking)控制策略。首先引入混沌Sine映射构造1种非线性随机递增惯性权重,并在粒子群的“个体认知”部分引入高斯扰动,同时利用对数函数构造学习因子,形成基于混沌映射和高斯扰动的改进粒子群算法;通过对6种典型单峰、多峰函数的测试,证明该算法收敛速度更快,不易陷入局部最优;将算法应用于MPPT控制中,并进一步通过不同算法MPPT控制进行对比仿真研究。对比仿真结果表明:在均匀光照强度、局部静态遮荫和动态遮荫3种情况下,基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略均具有更快的收敛速度和更小的搜索振荡幅度,能准确地搜寻到最大功率点,具有更高的寻优精度,从而提高了MPPT系统的发电效率。 展开更多
关键词 局部遮荫 最大功率点跟踪 混沌映射 高斯扰动 改进粒子优化算法
在线阅读 下载PDF
基于机器学习与粒子群算法的LBM多相流模型优化 被引量:1
4
作者 侯亚祺 张玮 +2 位作者 张鸿 高飞雨 胡嘉华 《化工学报》 北大核心 2025年第3期1120-1132,共13页
在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学... 在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学习模型的超参数,进一步优化LBM建模过程中的控制参数,建立了LBM-机器学习-粒子群算法耦合多相流数值模拟模型。基于该模型研究了T型微通道内弹状流流动参数对气泡演化过程稳定性的影响。模拟结果表明,所建LBM多相流模型能预测复杂条件下气泡伸长率,在此基础上通过伸长率分析找到了最优气液两相进口流速关系,有效解决了低毛细数下弹状流流动不稳定性问题,显著提高了模拟计算精度与计算效率。 展开更多
关键词 格子Boltzmann法 微通道弹状流 机器学习 粒子算法 模型优化
在线阅读 下载PDF
融入限制反向学习与柯西-高斯变异的蜣螂优化算法 被引量:1
5
作者 杨志龙 邹德旋 +2 位作者 李灿 邵莹莹 马乐杰 《计算机应用》 北大核心 2025年第7期2304-2316,共13页
针对蜣螂优化(DBO)算法中存在的收敛速度慢、精度不高以及容易陷入局部最优的问题,提出一种融入限制反向学习与柯西-高斯变异的蜣螂优化算法(SI-DBO)。首先,用Circle映射初始化种群,以使种群的分布更加均匀和具有多样性,从而提升算法的... 针对蜣螂优化(DBO)算法中存在的收敛速度慢、精度不高以及容易陷入局部最优的问题,提出一种融入限制反向学习与柯西-高斯变异的蜣螂优化算法(SI-DBO)。首先,用Circle映射初始化种群,以使种群的分布更加均匀和具有多样性,从而提升算法的收敛速度和寻优精度;其次,使用限制反向学习对蜣螂的位置进行更新,以提升蜣螂的搜索能力;最后,使用柯西-高斯变异策略帮助种群逃逸出局部最佳位置并寻找全局最佳位置。为了验证SI-DBO的性能,在测试函数上进行仿真实验并对实验结果进行Wilcoxon秩和检验,而且将该算法用于求解机器人夹持器问题。实验结果表明,与黑寡妇-蜣螂优化算法(BWDBO)和麻雀搜索算法(SSA)相比,SI-DBO在测试函数上均获得了较高的寻优精度和收敛速度,同时,SI-DBO在求解机器人夹持器问题时的效果优于粒子群优化(PSO)算法,验证了SIDBO具有更好的寻优性能和工程实用性。 展开更多
关键词 蜣螂优化算法 限制反向学习 柯西-高斯变异 Wilcoxon秩和检验 机器人夹持器问题
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测 被引量:1
6
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子优化算法
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
7
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于时序演变粒子群算法的双色注射产品翘曲工艺优化
8
作者 王涛 李光明 +1 位作者 胡秋霞 徐静 《化工学报》 北大核心 2025年第7期3403-3415,共13页
以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入... 以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入局部最优,造成优化困难等问题,提出了一种基于时序演变的粒子群优化算法(TEPSO),利用正交膨胀空间均衡散布的优点提高粒子群的搜索能力和效率,并采用Q-Learning思想,通过粒子与环境的不断交互探索,开发基于时序演变的学习策略以确定粒子正交空间的膨胀因子。在某轿车仪表板优化设计中,与初始试验方案相比,采用TEPSO算法优化后仪表板Z向翘曲从4.698 mm降低到2.194 mm,优化效果达到53.3%,证实了TEPSO算法的有效性和实用性。 展开更多
关键词 双色注射成型 粒子算法 强化学习 优化设计 翘曲变形 模拟 预测
在线阅读 下载PDF
趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法 被引量:2
9
作者 黄鑫宇 马宁 +2 位作者 付伟 季伟东 亓文凤 《计算机应用研究》 CSCD 北大核心 2024年第3期721-728,763,共9页
针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly wit... 针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。 展开更多
关键词 蝴蝶优化算法 樽海鞘优化算法 柯西变异 趋优变异反向学习 领导者策略
在线阅读 下载PDF
一种精英反向学习的粒子群优化算法 被引量:92
10
作者 周新宇 吴志健 +2 位作者 王晖 李康顺 张浩宇 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1647-1652,共6页
为解决传统粒子群优化算法易出现早熟的不足,提出了精英反向学习策略,引入精英粒子,采用反向学习生成其反向解,扩大搜索区域的范围,可增强算法的全局勘探能力.同时,为避免最优粒子陷入局部最优而导致整个群体出现搜索停滞,提出了差分演... 为解决传统粒子群优化算法易出现早熟的不足,提出了精英反向学习策略,引入精英粒子,采用反向学习生成其反向解,扩大搜索区域的范围,可增强算法的全局勘探能力.同时,为避免最优粒子陷入局部最优而导致整个群体出现搜索停滞,提出了差分演化变异策略,采用差分演化算法搜索最优粒子的邻域空间,可增强算法的局部开采能力.在14个测试函数上将本文算法与多种知名的PSO算法进行对比,实验结果表明本文算法在解的精度与收敛速度上更优. 展开更多
关键词 全局优化 粒子优化 精英反向学习 差分演化变异 体选择
在线阅读 下载PDF
基于自学习迁移粒子群算法及高斯罚函数的无功优化方法 被引量:36
11
作者 邓长虹 马庆 +2 位作者 肖永 游佳斌 李世春 《电网技术》 EI CSCD 北大核心 2014年第12期3341-3346,共6页
针对粒子群算法在求解无功优化问题时存在早熟收敛,易陷于局部最优的现象,提出了自学习迁移粒子群算法(self-learning migration particle swarm optimization,SLMPSO)。该算法在采用混沌序列对粒子群进行初始化操作,基于云模型理论的X... 针对粒子群算法在求解无功优化问题时存在早熟收敛,易陷于局部最优的现象,提出了自学习迁移粒子群算法(self-learning migration particle swarm optimization,SLMPSO)。该算法在采用混沌序列对粒子群进行初始化操作,基于云模型理论的X-条件云发生器对粒子的惯性权重进行自适应调整的基础上,引入一种迁移操作,以引导全局最优粒子的飞行方向,解决粒子群后期朝单一进化方向进化的问题,有效地增强了算法的全局寻优能力。针对电力系统无功优化中的离散变量归整问题,首先将离散变量完全化为连续变量进行迭代求解,在寻求至全局最优解后引入高斯罚函数对离散变量进行归整操作。以网损和电压偏离最小为目标,对IEEE标准30节点算例进行仿真计算,验证了所提算法的有效性和可行性。 展开更多
关键词 云模型 迁移操作 粒子优化算法 高斯罚函数 无功优化
在线阅读 下载PDF
混合均值中心反向学习粒子群优化算法 被引量:26
12
作者 孙辉 邓志诚 +2 位作者 赵嘉 王晖 谢海华 《电子学报》 EI CAS CSCD 北大核心 2019年第9期1809-1818,共10页
为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒... 为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒子能探索更多新区域.将本文算法与最新改进的粒子群算法、人工蜂群算法和差分算法在多种测试函数集上进行比较,实验结果验证了混合均值中心反向学习策略的有效性,算法的综合优化性能更强. 展开更多
关键词 全局寻优 混合均值中心 反向学习 粒子优化算法
在线阅读 下载PDF
基于扰动的精英反向学习粒子群优化算法 被引量:16
13
作者 李俊 汪冲 +1 位作者 李波 方国康 《计算机应用研究》 CSCD 北大核心 2016年第9期2584-2587,2591,共5页
针对粒子群算法容易陷入局部极值、进化后期收敛精度低的缺点,提出了一种基于扰动的精英反向学习粒子群算法。算法采用在粒子迭代的过程中,以一定的概率对当前的最优个体进行动态一般反向学习生成其反向解,引导粒子向最优解空间靠近;用... 针对粒子群算法容易陷入局部极值、进化后期收敛精度低的缺点,提出了一种基于扰动的精英反向学习粒子群算法。算法采用在粒子迭代的过程中,以一定的概率对当前的最优个体进行动态一般反向学习生成其反向解,引导粒子向最优解空间靠近;用一种非线性递减的方式改变惯性权重,以提高算法的收敛速度和收敛精度;采用扰动的方式增强算法的局部探索能力,帮助粒子跳出局部最优解。在14个标准函数上进行仿真测试,结果表明改进算法具有更高的收敛速度和收敛精度,能有效地避免陷入局部最优,适合求解函数优化的问题。 展开更多
关键词 粒子优化算法 精英反向学习 惯性权重 极值扰动 局部最优解
在线阅读 下载PDF
交叉反向学习和同粒社会学习的粒子群优化算法 被引量:10
14
作者 张新明 康强 +1 位作者 王霞 程金凤 《计算机应用》 CSCD 北大核心 2017年第11期3194-3200,3206,共8页
针对社会学习粒子群优化(SLPSO)算法存在的优化效率低、收敛速度慢等问题,提出了一种改进的SLPSO算法,即基于交叉反向学习和同粒社会学习的PSO算法(CPPSO)。首先,将最优解随机纵向交叉与一般反向学习以及随机反向学习构建交叉反向学习;... 针对社会学习粒子群优化(SLPSO)算法存在的优化效率低、收敛速度慢等问题,提出了一种改进的SLPSO算法,即基于交叉反向学习和同粒社会学习的PSO算法(CPPSO)。首先,将最优解随机纵向交叉与一般反向学习以及随机反向学习构建交叉反向学习;然后,以此交叉反向学习策略更新种群中的最优粒子位置,增强探索能力,并克服SLPSO中最优粒子无更新导致效率低下的缺点;最后,对于非最优粒子,与SLPSO采用基于维的社会学习不同,均采用新型基于粒子的社会学习机制,在提高全局搜索能力同时,更提高开采能力和搜索效率。在一组不同维基准函数上优化的实验结果表明,CPPSO的优化性能、搜索效率和普适性大幅度领先于SLPSO和其他先进的PSO改进算法,如交叉搜索PSO(CSPSO)算法、自我调节的PSO(SRPSO)算法、异构综合学习的PSO(HCLPSO)算法和反向学习和局部学习能力的PSO(RLPSO)算法。 展开更多
关键词 智能优化算法 粒子优化算法 社会学习 反向学习
在线阅读 下载PDF
融合榜样学习和反向学习的粒子群优化算法 被引量:8
15
作者 张新明 王霞 +1 位作者 涂强 康强 《河南师范大学学报(自然科学版)》 CAS 北大核心 2017年第6期91-99,共9页
为了提高粒子群优化算法(Particle swarm optimization,PSO)的优化效率,降低其陷入局部最优的概率,提出了一种融合榜样学习和反向学习的PSO算法(PSO based on combing Example learning and Opposition learning,EOPSO).首先,对粒子群... 为了提高粒子群优化算法(Particle swarm optimization,PSO)的优化效率,降低其陷入局部最优的概率,提出了一种融合榜样学习和反向学习的PSO算法(PSO based on combing Example learning and Opposition learning,EOPSO).首先,对粒子群中的非最优粒子采用新颖的榜样学习机制更新,以便提高全局搜索能力,避免算法陷入局部最优;其次,对粒子群中最优粒子采用反向学习混合机制更新,提升该粒子的搜索能力,进一步避免算法陷入局部最优;最后,对粒子群中的最优粒子还采用了自身变异机制更新,有利于搜索前期的全局搜索和后期的快速收敛.在15个不同维度的基准函数上进行了仿真实验,实验结果表明,与最先进的PSO改进算法ELPSO、SRPSO、LFPSO、HCLPSO相比,EOPSO优化性能更好. 展开更多
关键词 智能优化算法 粒子优化算法 榜样学习 反向学习
在线阅读 下载PDF
自适应精英反向学习的粒子群优化算法 被引量:7
16
作者 赵嘉 吕莉 孙辉 《小型微型计算机系统》 CSCD 北大核心 2015年第9期2166-2171,共6页
针对标准粒子群优化算法易陷入局部最优、进化后期收敛速度慢和收敛精度低等缺点,提出一种自适应精英反向学习的粒子群优化算法.在迭代过程中,算法判断种群是否陷入局部最优,若陷入局部最优,则随机选择精英粒子的部分维度进行反向学习,... 针对标准粒子群优化算法易陷入局部最优、进化后期收敛速度慢和收敛精度低等缺点,提出一种自适应精英反向学习的粒子群优化算法.在迭代过程中,算法判断种群是否陷入局部最优,若陷入局部最优,则随机选择精英粒子的部分维度进行反向学习,且学习的维度空间大小随着进化呈线性递减,以此增强算法在进化前期的探索能力和后期的开发能力.在固定评估次数的情况下,实验对10个常用经典基准测试函数在30维上进行仿真测试,实验结果表明:改进算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于一些知名的改进粒子群优化算法. 展开更多
关键词 粒子优化算法 自适应 精英粒子 反向学习
在线阅读 下载PDF
具有反向学习和自适应逃逸功能的粒子群优化算法 被引量:7
17
作者 吕莉 赵嘉 孙辉 《计算机应用》 CSCD 北大核心 2015年第5期1336-1341,共6页
为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标... 为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标准粒子群优化算法的进化模式;当粒子陷入"早熟"状态,运用反向学习和自适应逃逸功能,对个体最优位置进行反向学习,产生粒子的反向解,增加粒子的反向学习能力,增强算法逃离局部最优的能力,提高算法寻优率。在固定评估次数的情况下,对8个基准测试函数进行仿真,实验结果表明:所提算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于多种经典粒子群优化算法,如充分联系的粒子群优化算法(FIPS)、基于时变加速度系数的自组织分层粒子群优化算法(HPSO-TVAC)、综合学习的粒子群优化算法(CLPSO)、自适应粒子群优化算法(APSO)、双中心粒子群优化算法(DCPSO)和具有快速收敛和自适应逃逸功能的粒子群优化算法(FAPSO)等。 展开更多
关键词 粒子优化算法 反向学习 算法状态 自适应逃逸
在线阅读 下载PDF
基于不同学习模型的精英反向粒子群优化算法 被引量:4
18
作者 赵嘉 付平 +1 位作者 李崇侠 吕莉 《小型微型计算机系统》 CSCD 北大核心 2015年第6期1368-1372,共5页
粒子群优化算法在求解连续函数优化问题时易早熟收敛、求解精度低,将反向学习策略引入粒子群优化算法,提出基于精英反向学习的粒子群优化算法.算法在进化过程中,依函数评估次数线性递减方式选择维度空间,随机选择全局最优粒子的维度进... 粒子群优化算法在求解连续函数优化问题时易早熟收敛、求解精度低,将反向学习策略引入粒子群优化算法,提出基于精英反向学习的粒子群优化算法.算法在进化过程中,依函数评估次数线性递减方式选择维度空间,随机选择全局最优粒子的维度进行反向学习,扩大搜索区域的范围,以此增强算法的全局勘探能力,提高算法寻找最优解的概率.随后,将4种常见的广义反向学习模型引入精英反向粒子群优化算法中,得到4种不同学习模型的精英反向粒子群优化算法.在12个经典测试函数上将上述4种算法进行对比,实验结果表明:虽然不同的反向学习模型形成的算法均比标准粒子群优化算法性能更优,但它们之间的寻优效率、计算精度等方面差异较大. 展开更多
关键词 粒子优化算法 反向学习 函数优化 精英粒子
在线阅读 下载PDF
一种自适应柯西变异的反向学习粒子群优化算法 被引量:20
19
作者 康岚兰 董文永 田降森 《计算机科学》 CSCD 北大核心 2015年第10期226-231,共6页
针对传统粒子群优化算法易出现早熟的问题,提出了一种自适应变异的反向学习粒子群优化算法。该算法在一般性反向学习方法的基础上,提出了自适应柯西变异策略(ACM)。采用一般性反向学习策略生成反向解,可扩大搜索空间,增强算法的全局勘... 针对传统粒子群优化算法易出现早熟的问题,提出了一种自适应变异的反向学习粒子群优化算法。该算法在一般性反向学习方法的基础上,提出了自适应柯西变异策略(ACM)。采用一般性反向学习策略生成反向解,可扩大搜索空间,增强算法的全局勘探能力。为避免粒子陷入局部最优解而导致搜索停滞现象的发生,采用ACM策略对当前最优粒子进行扰动,自适应地获取变异点,在有效提高算法局部开采能力的同时,使算法能更加平稳快速地收敛到全局最优解。为进一步平衡算法的全局搜索与局部探测能力,采用非线性的自适应惯性权值。将算法在14个测试函数上与多种基于反向学习策略的PSO算法进行对比,实验结果表明提出的算法在解的精度以及收敛速度上得到了大幅度的提高。 展开更多
关键词 粒子优化 一般性反向学习 自适应柯西变异 自适应惯性权值
在线阅读 下载PDF
融入重心反向学习和单纯形搜索的粒子群优化算法 被引量:6
20
作者 张文宁 周清雷 +1 位作者 焦重阳 梅亮 《计算机工程与科学》 CSCD 北大核心 2023年第9期1629-1638,共10页
针对粒子群优化PSO算法后期种群多样性差和易陷入局部最优解等问题,提出具备重心反向学习和单纯形搜索行为的粒子群优化COLS-PSO算法。初始时,基于混沌策略构造出搜索空间。进化过程中,基于Spearman系数选择需要进行重心反向学习的粒子... 针对粒子群优化PSO算法后期种群多样性差和易陷入局部最优解等问题,提出具备重心反向学习和单纯形搜索行为的粒子群优化COLS-PSO算法。初始时,基于混沌策略构造出搜索空间。进化过程中,基于Spearman系数选择需要进行重心反向学习的粒子,以帮助算法逃离局部极值区域。进一步引入局部搜索能力较强的单纯形搜索方法增强对最优粒子邻近区域的开发,以提高搜索精度。实验先在若干标准测试函数上进行,之后将COLS-PSO算法应用于软件测试数据生成问题。实验结果表明,COLS-PSO算法在求解精度、收敛速度和有效性方面表现较好,能够有效平衡种群多样性和算法收敛性的矛盾。 展开更多
关键词 粒子优化算法 混沌策略 重心反向学习 单纯形搜索 测试数据生成
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部