该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概...该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。展开更多
针对全局同态先验马尔可夫随机场(Markov random field,MRF)模型在图像分割中不能有效利用图像局部统计特征的问题,提出了一种基于局部自适应先验MRF模型的图像分割算法。该算法基于贝叶斯理论,利用局部先验Potts模型描述图像的局部特征...针对全局同态先验马尔可夫随机场(Markov random field,MRF)模型在图像分割中不能有效利用图像局部统计特征的问题,提出了一种基于局部自适应先验MRF模型的图像分割算法。该算法基于贝叶斯理论,利用局部先验Potts模型描述图像的局部特征,建立了一种局部自适应先验MRF模型;提出了基于区域的置信度传播(Belief Propagation,BP)算法,把图像的局部区域特征传递到全局,最终基于最大后验准则(MAP)得到图像的分割结果。实验结果表明:所提模型对于图像中的噪声或者纹理特征等具有较好的分割,分割结果明显优于全局同态先验MRF模型;提出的自适应先验MRF模型对于图像的噪声或者纹理突变信号的干扰具有较强的鲁棒性;算法具有较少的迭代次数和较好的分割结果,且分割时间较短。展开更多
电路板红外图像芯片提取是电路板红外图像故障检测系统中的重要环节,已成为红外图像分割领域关注的一个重点。传统的芯片发热区域提取方法大多需要人工干预,且分割效果不理想,容易丢失边缘信息,导致细节特征不明显。针对以上缺陷提出一...电路板红外图像芯片提取是电路板红外图像故障检测系统中的重要环节,已成为红外图像分割领域关注的一个重点。传统的芯片发热区域提取方法大多需要人工干预,且分割效果不理想,容易丢失边缘信息,导致细节特征不明显。针对以上缺陷提出一种结合博弈论的改进马尔可夫随机场分割算法。首先用现有的OTSU算法对图像进行粗分割,将图像分为两个子集(背景域和目标域),然后利用马尔可夫随机场(MRF,Markov Random Field)理论建立图像分割模型,最后利用结合博弈理论的MMD(Modified Metropolis Dynamics)算法,根据模型分别对每个子集进行细致分割,提取核心发热区域。实验表明,改进算法应用在电路板芯片发热区域提取时,能够较好地抑制噪声,准确处理边缘信息,与传统算法相比,在视觉效果和客观数据上都有很大的提高,具有一定的准确性和鲁棒性。展开更多
文摘该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。
文摘针对全局同态先验马尔可夫随机场(Markov random field,MRF)模型在图像分割中不能有效利用图像局部统计特征的问题,提出了一种基于局部自适应先验MRF模型的图像分割算法。该算法基于贝叶斯理论,利用局部先验Potts模型描述图像的局部特征,建立了一种局部自适应先验MRF模型;提出了基于区域的置信度传播(Belief Propagation,BP)算法,把图像的局部区域特征传递到全局,最终基于最大后验准则(MAP)得到图像的分割结果。实验结果表明:所提模型对于图像中的噪声或者纹理特征等具有较好的分割,分割结果明显优于全局同态先验MRF模型;提出的自适应先验MRF模型对于图像的噪声或者纹理突变信号的干扰具有较强的鲁棒性;算法具有较少的迭代次数和较好的分割结果,且分割时间较短。
文摘电路板红外图像芯片提取是电路板红外图像故障检测系统中的重要环节,已成为红外图像分割领域关注的一个重点。传统的芯片发热区域提取方法大多需要人工干预,且分割效果不理想,容易丢失边缘信息,导致细节特征不明显。针对以上缺陷提出一种结合博弈论的改进马尔可夫随机场分割算法。首先用现有的OTSU算法对图像进行粗分割,将图像分为两个子集(背景域和目标域),然后利用马尔可夫随机场(MRF,Markov Random Field)理论建立图像分割模型,最后利用结合博弈理论的MMD(Modified Metropolis Dynamics)算法,根据模型分别对每个子集进行细致分割,提取核心发热区域。实验表明,改进算法应用在电路板芯片发热区域提取时,能够较好地抑制噪声,准确处理边缘信息,与传统算法相比,在视觉效果和客观数据上都有很大的提高,具有一定的准确性和鲁棒性。