期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
通道-空间多尺度增强与双池化注意的表情识别网络
1
作者 刘娟 张民扬 +2 位作者 胡敏 黄忠 江巨浪 《计算机应用研究》 北大核心 2025年第10期3182-3191,共10页
针对自然场景下表情特征提取仅关注通道-空间单一尺度信息以及平均池化易丢失局部显著性语义的问题,提出一种通道-空间多尺度增强与双池化注意的表情识别网络。首先,为捕获通道-空间整体多尺度增强语义,设计通道对称级联多尺度模块和空... 针对自然场景下表情特征提取仅关注通道-空间单一尺度信息以及平均池化易丢失局部显著性语义的问题,提出一种通道-空间多尺度增强与双池化注意的表情识别网络。首先,为捕获通道-空间整体多尺度增强语义,设计通道对称级联多尺度模块和空间多尺度特征提取模块,并以此构建基于通道-空间多尺度结构的整体特征增强子网。然后,为表征通道-空间区域双池化显著语义,将高效局部注意力机制改进为高效通道-空间注意力机制,并嵌入到区域特征注意子网。最后,为获取整体多尺度增强语义与区域双池化显著语义之间的潜在相关性,采用交叉注意力机制进行整体特征与区域特征之间的特征交互,并设计特征融合子网完成两类特征的模型级融合。实验结果表明,在人脸表情数据集RAF-DB和FERPlus上,其表情识别率分别达到89.97%和90.26%,比基线网络分别提升了13.54和10.95个百分点。与其他网络相比,提出的网络在自然场景下具有较好的表情识别性能。 展开更多
关键词 人脸表情识别 多尺度增强 双池化注意 通道-空间多尺度结构 高效通道-空间注意力机制
在线阅读 下载PDF
采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测 被引量:3
2
作者 聂鹏 杨程越 +2 位作者 彭新月 于家鹤 潘五九 《中国机械工程》 EI CAS CSCD 北大核心 2024年第10期1793-1801,共9页
针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信... 针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信号,信号经连续小波变换转换为小波尺度谱。搭建ResNet-50网络结构,从空间和通道双维度对卷积提取的特征图进行权重标定。研究结果表明,scSE可以从空间和通道两个维度做到增强有用特征,抑制无用特征,经scSE优化的网络结构识别准确度达到96.15%。 展开更多
关键词 刀具磨损 连续小波变换 空间通道激励注意力机制 深度残差神经网络
在线阅读 下载PDF
基于Mamba空间注意力与通道交互注意力模块的双路径脑肿瘤分割方法
3
作者 李冰 刘彦 《计算机应用研究》 北大核心 2025年第11期3482-3488,共7页
脑肿瘤病变区域的有效管理依赖于对脑肿瘤图像的精确分割。现有方法对全局空间信息建模能力有限,且未能充分捕捉不同模态特征间的内在联系。基于此,提出了一种基于Mamba空间注意力和通道交互注意力单元的双路径脑肿瘤分割方法,该方法的... 脑肿瘤病变区域的有效管理依赖于对脑肿瘤图像的精确分割。现有方法对全局空间信息建模能力有限,且未能充分捕捉不同模态特征间的内在联系。基于此,提出了一种基于Mamba空间注意力和通道交互注意力单元的双路径脑肿瘤分割方法,该方法的网络编码器由一系列空间-通道双路注意力单元组成;此单元包括三个子模块:双向Mamba空间位置信息注意力模块,旨在增强网络对长依赖的建模能力,同时保持较低的计算负担;通道交互注意力模块能够学习不同模态间的特征关系,提高对通道信息的敏感性;最后使用两级融合模块整合子模块输出。所提方法在公开数据集BraTs21上达到84.29%(Dice)、88.08%(F_(1)-score)、75.80%(MIoU),优于多种主流分割方法,验证了该方法的有效性。 展开更多
关键词 多模态MRI 脑肿瘤分割 注意力机制 Mamba 空间通道注意力
在线阅读 下载PDF
融合空间与通道重构卷积和注意力的轻量型动物姿态估计 被引量:1
4
作者 宰清鹏 徐杨 《计算机工程与应用》 北大核心 2025年第6期282-294,共13页
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提... 动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。 展开更多
关键词 动物姿态估计 轻量型 高分辨率 注意力机制 空间通道重构卷积
在线阅读 下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:8
5
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
在线阅读 下载PDF
融合高效通道注意力的复杂场景违禁品检测 被引量:1
6
作者 崔丽群 李万欣 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期494-505,共12页
针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引... 针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引入到感兴趣池化层(ROIpooling)后,突出违禁品的轮廓、色彩等信息。本文算法在S_DXray数据集上的m AP达到92.06%,改进后网络模型检测精度提高5.06个百分点。有效提高X射线图像违禁品检测的精度和小尺度目标的检测能力,有效避免错检、漏检的现象。 展开更多
关键词 目标检测 X射线图像 残差网络 特征金字塔 K均值聚类 快速区域卷积神经网络 高效通道注意力机制
在线阅读 下载PDF
通道-空间联合注意力机制的显著性检测模型 被引量:9
7
作者 陈维婧 周萍 +2 位作者 杨海燕 杨青 陈睿 《计算机工程与应用》 CSCD 北大核心 2021年第19期214-219,共6页
针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注... 针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注意力机制的基础上并行融入了空间注意力机制,对特征图的空间信息进行加权获得目标突出的显著性区域;将通道注意力机制与空间注意力机制输出的两个特征图加权融合反馈至通道-空间联合注意力机制,从而得到细粒度更高的显著图。实验结果表明,该模型在公开的数据集DUTS-TE和SOD上,使用F-measure和平均绝对误差作为评估标准均优于其他同类模型。 展开更多
关键词 显著性检测 通道注意力机制 空间注意力机制
在线阅读 下载PDF
基于空间金字塔注意力机制残差网络的高光谱图像分类 被引量:1
8
作者 刘和 宋璎珞 +3 位作者 胡龙湘 刘国辉 王侃 王爱丽 《液晶与显示》 CAS CSCD 北大核心 2024年第6期833-843,共11页
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征... 为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征。然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互。最后经过Softmax分类器获得分类标签。本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%。相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度。 展开更多
关键词 高光谱 图像分类 注意力机制 空间-光谱特征
在线阅读 下载PDF
DenseNet结合空间通道注意力机制的环境声音分类 被引量:3
9
作者 董绍江 刘伟 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期179-187,共9页
音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通... 音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通道注意力机制。使用DenseNet对Log-Mel谱图进行特征提取,引入空间通道注意力机制使网络更加关注显著特征;为了解决数据不足导致的过拟合问题,将混合数据增强的方法应用于Log-Mel谱图,从而保证了数据的多样性;在2个公共数据集(ESC-50和ESC-10)验证所提方法的有效性。结果表明:所提的空间通道注意力机制模型能够使神经网络对环境声音的识别率分别达到79.3%(ESC-50)和94.3%(ESC-10)。 展开更多
关键词 环境声音分类 空间通道注意力机制 密集连接卷积网络 混合数据增强
在线阅读 下载PDF
基于高效通道注意力机制与多尺度特征融合的烟丝图像识别方法研究 被引量:3
10
作者 刘江鹏 牛群峰 +3 位作者 靳毅 陈霞 王莉 袁强 《河南农业科学》 北大核心 2022年第11期145-154,共10页
针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图... 针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图像的前景和后景并完成分割,提高输入图像的抗环境干扰能力和特征提取能力。在Inception-ResNet-V2网络中引入高效通道注意力机制,加强模型提取特征的能力;同时,将改进后的模块输出的特征图进行多尺度融合,增加特征代表性,降低过拟合风险。最后,在比较收敛性和准确性时,用PReLU和AdaBound代替了ReLU激活函数和Adam优化器。结果表明,提出的算法具有较好的泛化能力,能实现4类烟丝高效识别,最终识别精度为97.23%,单幅图像的检测时间为0.107 s。 展开更多
关键词 烟丝 K-MEANS算法 Inception网络 高效通道注意力机制 多尺度特征融合
在线阅读 下载PDF
基于空间通道注意力机制与多尺度融合的交通标志识别研究 被引量:9
11
作者 黄志强 李军 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期93-102,共10页
通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图... 通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图的语义信息,将第19层卷积层通过上采样后与第7层卷积层相连接,多尺度融合后输入YOLO层形成新的特征金字塔,以此提高小目标的识别率。同时,为使网络更加关注交通标志的细节信息,在特征金字塔网络中增添能够增强前景信息降低背景信息的空间通道注意力机制。使用Kmeans聚类算法对数据集作聚类处理,获得一组先验框。在长沙理工大学交通标志数据集上进行测试,实验结果表明,改进后算法的识别率达到91.8%,与YOLOV3-tiny算法相比提高了24.9个百分点,而与YOLOV3算法相比,每张图片的检测时间降低至0.133s,降低了49.6%,该算法具有较强的实时性和准确性。 展开更多
关键词 交通标志 轻量化网络 YOLOV3-3ctiny 多尺度融合 特征金字塔 空间通道注意力机制
在线阅读 下载PDF
基于高效通道注意力机制的语音情感识别方法 被引量:10
12
作者 戴妍妍 金赟 +2 位作者 马勇 杨子秀 俞佳佳 《信号处理》 CSCD 北大核心 2021年第10期1835-1842,共8页
传统语音处理方式是把语音样本分割成固定长度的片段,但这种语音样本的切割会导致语音情感分类准确性下降。本文引入循环填充法处理可变长度的log-Mel谱图,该方法能够更好的利用时间动态信息,同时可以减少填充的无效数据对模型参数学习... 传统语音处理方式是把语音样本分割成固定长度的片段,但这种语音样本的切割会导致语音情感分类准确性下降。本文引入循环填充法处理可变长度的log-Mel谱图,该方法能够更好的利用时间动态信息,同时可以减少填充的无效数据对模型参数学习的干扰。由于人类的情感只能在语音中某些特定的时刻出现,为了寻找关键情感特征,本文构建了基于高效通道注意力机制的语音情感识别模型,其中高效通道注意力机制能够计算通道图的重要性,有选择的强调通道图,改进特定情感的表达。本文在交互式情感二元动作捕捉(IEMOCAP)数据库上进行相关实验。在IEMOCAP上采用循环填充法的加权精度(WA)和非加权精度(UA)分别达到73.2%和70.9%,采用本文提出模型的WA和UA分别达到76.0%和73.4%。 展开更多
关键词 卷积神经网络 高效通道注意力机制 变长序列
在线阅读 下载PDF
基于高效通道注意力机制的龙格库塔去雨网络 被引量:2
13
作者 袁祎铭 韩婷婷 +1 位作者 丁佳骏 齐炳森 《计算机应用》 CSCD 北大核心 2022年第S01期305-309,共5页
单图去雨问题是图像处理的一个重要研究方向。为了解决现有方法对雨痕特征提取不够充分的问题,提出一种基于注意力机制的龙格库塔(RK)模块的去雨网络。该模块采用RK模块提高提取图像特征的能力并采用高效通道注意力(ECA)机制加强对雨痕... 单图去雨问题是图像处理的一个重要研究方向。为了解决现有方法对雨痕特征提取不够充分的问题,提出一种基于注意力机制的龙格库塔(RK)模块的去雨网络。该模块采用RK模块提高提取图像特征的能力并采用高效通道注意力(ECA)机制加强对雨痕局部表征的关注。通过堆叠多个基于ECA机制的RK模块,可以构建深度去雨模型,较好地特提取雨痕特征;同时采用全局回传机制,利用雨痕的高阶特征以更新其低阶特征,提高雨痕表征的提取质量,逐步提升重建背景图的质量。基于公开数据集Rain100L、Rain100H和RainHeavy的测试结果表明,所提算法能够较好地重构雨天背景图。采用峰值信噪比(PNSR)和结构相似度(SSIM)两个常用指标评估重建背景图像结果,并与去雨算法Semi-Supervised transfer learning for Image rain Removal(SSIR)、Progressive Recurrent Network(PReNet)、Bilateral Recurrent Network(BRN)进行比较,结果显示所提算法的性能最优。 展开更多
关键词 单图去雨 深度学习 龙格库塔模块 高效通道注意力 回传机制
在线阅读 下载PDF
增强小目标检测性能的通道自注意力机制算法研究 被引量:5
14
作者 尹芹 方晖 +3 位作者 王金东 王侃 晏天文 霍智勇 《南京邮电大学学报(自然科学版)》 北大核心 2022年第4期69-74,共6页
小目标检测是计算机视觉领域具有挑战性的问题。空间注意力和通道注意力机制的使用提高了目标检测网络的均值平均精度,但捕获小物体上下文信息的能力仍然有限,并且在小目标和大中型目标的检测精度上存在差距,难以感知小物体的位置。算... 小目标检测是计算机视觉领域具有挑战性的问题。空间注意力和通道注意力机制的使用提高了目标检测网络的均值平均精度,但捕获小物体上下文信息的能力仍然有限,并且在小目标和大中型目标的检测精度上存在差距,难以感知小物体的位置。算法构建了一种基于通道自注意力机制(Channel Self-Attention, CSA)的算法模块,将输入特征映射压缩后,运用自注意力机制建立特征通道间相关性,自适应地重新优化特征通道的响应,提升了捕获小物体远距离上下文信息的能力,从而提高了对小目标的检测精度。实验结果表明,在几乎不增加计算成本的情况下,CSA块能够为现有目标检测网络带来性能改进。在PASCAL VOC2007数据集上,采用通道自注意力机制的RetinaNet的mAP值分别比原始RetinaNet的mAP值高3.11个百分点。使用通道自注意力机制的MobileNetv2比原始的MobileNetv2 mAP值提高3.05个百分点。 展开更多
关键词 注意力机制 小目标检测 注意力 通道注意力 空间注意力
在线阅读 下载PDF
融合空洞空间金字塔池化和注意力的轻量化遥感影像道路提取 被引量:6
15
作者 刘志恒 岳子腾 +3 位作者 周绥平 江澄 节永师 陈雪梅 《航天返回与遥感》 CSCD 北大核心 2024年第1期111-122,共12页
针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块... 针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块,实现多尺度道路信息融合;再引入挤压激励通道注意力机制,增强网络特征表征质量;最后使用深度可分离卷积方法改进网络残差模块实现模型轻量化,以降低模型计算复杂度。在公开数据集上进行了模型性能测试,实验结果表明,文章所提算法的准确率、精确率、召回率、F1分数和平均交并比,相比原始HRNet分别提升了5.35%、2.15%、4.1%、3.15%和14.34%,且减少了36.1%的参数数量;相比其他网络,该算法突出了细小道路的特征,道路预测结果连续性、完整性好,并且模型小易于部署在实时检测设备中,有效改善了道路提取任务中错分和缺失的情况,是一种适应性更强、分割精度更高、更轻量化的多尺度道路提取算法。 展开更多
关键词 道路提取 空间金字塔池化 通道注意力机制 可分离卷积 高分辨率网络 遥感影像
在线阅读 下载PDF
IVYA-SIAM联合优化的多模态人口空间化模型构建及驱动效应分析
16
作者 王立志 肖东升 《测绘通报》 北大核心 2025年第8期95-99,106,共6页
针对现有人口空间化模型依赖单一算法导致的精度瓶颈与复杂空间异质性解析不足问题,本文提出“多模态集成-参数自适应-特征增强”三阶优化框架。首先融合夜间灯光、建筑物轮廓等多源数据,通过RF、XGBoost与MLP堆叠集成次级模型(N-MLP);... 针对现有人口空间化模型依赖单一算法导致的精度瓶颈与复杂空间异质性解析不足问题,本文提出“多模态集成-参数自适应-特征增强”三阶优化框架。首先融合夜间灯光、建筑物轮廓等多源数据,通过RF、XGBoost与MLP堆叠集成次级模型(N-MLP);然后引入常春藤算法(IVYA)动态优化超参数,并设计空间交互增强的双通道注意力机制(SIAM)以强化地理空间依赖解析;最后以成都市为案例,构建400 m格网与乡镇/街道双尺度验证体系,结合低空经济需求弹性模型,分析人口分布对无人机物流的驱动效应。试验表明:优化后的SIAM-IVYA-N-MLP模型在格网尺度R^(2)达0.9479,MAE与RMSE分别降低14.67%和3.38%;乡镇/街道尺度R^(2)达0.9716,主城区人口密度每增加1%,无人机物流需求增长1.19%。本文研究为高精度人口空间化及低空经济基础设施布局提供了可操作的技术路径。 展开更多
关键词 人口空间 常春藤算法 空间交互-注意力机制 集成学习 低空经济
在线阅读 下载PDF
基于混合注意力生成对抗网络的遥感图像去雾方法
17
作者 马六 毛克彪 郭中华 《智慧农业(中英文)》 2025年第2期172-182,共11页
[目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提... [目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提高去雾技术的效果,满足农业、城市规划等领域对图像质量日益增长的需求,现有方法亟需改进。[方法]本研究提出了一种混合注意力生成对抗网络(Hybrid Attention-Based Generative Adversarial Network,HAB-GAN)。该模型通过结合高效通道注意力模块与空间注意力模块,嵌入生成对抗网络架构中,实现了对遥感图像去雾效果的显著提升。高效通道注意力模块通过降低全局特征聚合中的冗余信息,既保留了性能,又减少了模型复杂度;空间注意力模块则从局部到全局对遥感图像中的雾化区域进行识别和聚焦,增强了对这些区域的恢复能力。这种方法能够更加有效地应对遥感图像中复杂多变的景观,尤其适用于农业等需要高质量遥感数据的领域。[结果与讨论]在RESISC(Remote Sensing Image Scene Classification)45数据集上,与现有的其他注意力机制去雾模型,如SpA GAN和HyA-GAN进行比较,HAB-GAN模型去雾效果更优,其中峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)分别增加了2.64和1.14 dB,结构相似度(Structural Similarity Index,SSIM)分别增加了0.0122和0.0019。此外,消融实验验证了混合注意力机制的有效性,去除HAB模块后,HAB-GAN模型的PSNR下降了3.87 dB,SSIM下降了0.0334。[结论]提出的HAB-GAN模型显著提升了遥感图像的去雾效果,使生成的图像更加接近无雾图像,特别是对于复杂的农业、环境监测等场景具有重要应用价值。HAB模块在提升模型性能方面发挥了关键作用,为未来的遥感图像处理和相关领域提供了有力的技术支持。 展开更多
关键词 遥感图像 深度学习 生成对抗网络 高效通道注意力模块 空间注意力模块 去雾
在线阅读 下载PDF
融合空间-傅里叶域信息的机器人低光环境抓取检测
18
作者 陈路 王怀瑶 +2 位作者 刘京阳 闫涛 陈斌 《计算机应用》 北大核心 2025年第5期1686-1693,共8页
针对现有抓取检测方法无法有效感知稀疏、微弱特征,导致低光环境下机器人抓取检测性能下降的问题,提出一种融合空间-傅里叶域信息的机器人低光环境抓取检测方法。首先,该方法的骨干网络采用编-解码器结构,在网络深层特征与浅层特征融合... 针对现有抓取检测方法无法有效感知稀疏、微弱特征,导致低光环境下机器人抓取检测性能下降的问题,提出一种融合空间-傅里叶域信息的机器人低光环境抓取检测方法。首先,该方法的骨干网络采用编-解码器结构,在网络深层特征与浅层特征融合过程中进行空间域-傅里叶域的特征提取。具体地,在空间域中通过水平和垂直方向的条带卷积捕获全局上下文信息,提取对抓取检测任务敏感的特征;在傅里叶域中分别调整振幅和相位,实现对图像细节和纹理特征的恢复。其次,引入R-CoA(Row-Column Attention)模块平衡图像全局与局部信息,并对图像进行行、列相对位置编码以强化与抓取任务相关的位置信息。最后,在低光Cornell、低光Jacquard以及所构建的低光C⁃Cornell数据集上分别进行验证,所提低光抓取检测方法最高准确率分别达到96.62%、92.01%和95.50%。在低光Cornell数据集(高斯噪声且γ=1.5)上,与GR-ConvNetv2(Generative Residual Convolutional Neural Network v2)、SE⁃ResUNet(Squeeze-and-Excitation ResUNet)相比,所提方法的准确率分别提升2.24个百分点和1.12个百分点。所提方法能够在低光环境下有效提升抓取检测的鲁棒性和准确性,为机器人在低光照条件下的抓取任务提供支持。 展开更多
关键词 机器人 抓取检测 空间-傅里叶域 注意力机制 深度神经网络
在线阅读 下载PDF
基于光谱-空间注意力残差网络的高光谱图像分类 被引量:4
19
作者 汪菲菲 赵慧洁 +2 位作者 李娜 李思远 蔡昱 《光子学报》 EI CAS CSCD 北大核心 2023年第12期200-218,共19页
在高光谱图像分类任务中,引入注意力改变提取到的光谱和空间特征权重,有效突出重要特征,提高分类准确率。将注意力机制、残差网络和特征提取模块集成到分类框架中,引入中心区域光谱注意力机制,在避免干扰像素对波段权重影响的同时,利用... 在高光谱图像分类任务中,引入注意力改变提取到的光谱和空间特征权重,有效突出重要特征,提高分类准确率。将注意力机制、残差网络和特征提取模块集成到分类框架中,引入中心区域光谱注意力机制,在避免干扰像素对波段权重影响的同时,利用周围像素增强中心像素波段,增强光谱特征的鲁棒性进而提取有效的光谱特征。并在此基础上提出了光谱-空间注意力残差网络,该网络可以从高光谱图像中连续提取到丰富的光谱特征和空间特征,并通过残差网络连接特征提取模块,缓解了精度下降问题,保证网络良好的分类性能。在4个公开数据集上,所提出的分类算法和其他算法相比,各项指标均达到最优。 展开更多
关键词 光谱-空间特征 残差网络 高光谱分类 光谱注意力机制 空间注意力机制
在线阅读 下载PDF
Attention-YOLO:引入注意力机制的YOLO检测算法 被引量:81
20
作者 徐诚极 王晓峰 杨亚东 《计算机工程与应用》 CSCD 北大核心 2019年第6期13-23,125,共12页
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加... 实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP_(@IoU[0.5:0.95])提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。 展开更多
关键词 目标检测 YOLOv3算法 Attention-YOLO算法 通道注意力机制 空间注意力机制
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部