期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
融合高效通道注意力的复杂场景违禁品检测 被引量:1
1
作者 崔丽群 李万欣 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期494-505,共12页
针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引... 针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引入到感兴趣池化层(ROIpooling)后,突出违禁品的轮廓、色彩等信息。本文算法在S_DXray数据集上的m AP达到92.06%,改进后网络模型检测精度提高5.06个百分点。有效提高X射线图像违禁品检测的精度和小尺度目标的检测能力,有效避免错检、漏检的现象。 展开更多
关键词 目标检测 X射线图像 残差网络 特征金字塔 K均值聚类 快速区域卷积神经网络 高效通道注意力机制
在线阅读 下载PDF
基于高效通道注意力机制与多尺度特征融合的烟丝图像识别方法研究 被引量:2
2
作者 刘江鹏 牛群峰 +3 位作者 靳毅 陈霞 王莉 袁强 《河南农业科学》 北大核心 2022年第11期145-154,共10页
针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图... 针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图像的前景和后景并完成分割,提高输入图像的抗环境干扰能力和特征提取能力。在Inception-ResNet-V2网络中引入高效通道注意力机制,加强模型提取特征的能力;同时,将改进后的模块输出的特征图进行多尺度融合,增加特征代表性,降低过拟合风险。最后,在比较收敛性和准确性时,用PReLU和AdaBound代替了ReLU激活函数和Adam优化器。结果表明,提出的算法具有较好的泛化能力,能实现4类烟丝高效识别,最终识别精度为97.23%,单幅图像的检测时间为0.107 s。 展开更多
关键词 烟丝 K-MEANS算法 Inception网络 高效通道注意力机制 多尺度特征融合
在线阅读 下载PDF
基于高效通道注意力机制的语音情感识别方法 被引量:10
3
作者 戴妍妍 金赟 +2 位作者 马勇 杨子秀 俞佳佳 《信号处理》 CSCD 北大核心 2021年第10期1835-1842,共8页
传统语音处理方式是把语音样本分割成固定长度的片段,但这种语音样本的切割会导致语音情感分类准确性下降。本文引入循环填充法处理可变长度的log-Mel谱图,该方法能够更好的利用时间动态信息,同时可以减少填充的无效数据对模型参数学习... 传统语音处理方式是把语音样本分割成固定长度的片段,但这种语音样本的切割会导致语音情感分类准确性下降。本文引入循环填充法处理可变长度的log-Mel谱图,该方法能够更好的利用时间动态信息,同时可以减少填充的无效数据对模型参数学习的干扰。由于人类的情感只能在语音中某些特定的时刻出现,为了寻找关键情感特征,本文构建了基于高效通道注意力机制的语音情感识别模型,其中高效通道注意力机制能够计算通道图的重要性,有选择的强调通道图,改进特定情感的表达。本文在交互式情感二元动作捕捉(IEMOCAP)数据库上进行相关实验。在IEMOCAP上采用循环填充法的加权精度(WA)和非加权精度(UA)分别达到73.2%和70.9%,采用本文提出模型的WA和UA分别达到76.0%和73.4%。 展开更多
关键词 卷积神经网络 高效通道注意力机制 变长序列
在线阅读 下载PDF
基于高效通道注意力机制的龙格库塔去雨网络 被引量:2
4
作者 袁祎铭 韩婷婷 +1 位作者 丁佳骏 齐炳森 《计算机应用》 CSCD 北大核心 2022年第S01期305-309,共5页
单图去雨问题是图像处理的一个重要研究方向。为了解决现有方法对雨痕特征提取不够充分的问题,提出一种基于注意力机制的龙格库塔(RK)模块的去雨网络。该模块采用RK模块提高提取图像特征的能力并采用高效通道注意力(ECA)机制加强对雨痕... 单图去雨问题是图像处理的一个重要研究方向。为了解决现有方法对雨痕特征提取不够充分的问题,提出一种基于注意力机制的龙格库塔(RK)模块的去雨网络。该模块采用RK模块提高提取图像特征的能力并采用高效通道注意力(ECA)机制加强对雨痕局部表征的关注。通过堆叠多个基于ECA机制的RK模块,可以构建深度去雨模型,较好地特提取雨痕特征;同时采用全局回传机制,利用雨痕的高阶特征以更新其低阶特征,提高雨痕表征的提取质量,逐步提升重建背景图的质量。基于公开数据集Rain100L、Rain100H和RainHeavy的测试结果表明,所提算法能够较好地重构雨天背景图。采用峰值信噪比(PNSR)和结构相似度(SSIM)两个常用指标评估重建背景图像结果,并与去雨算法Semi-Supervised transfer learning for Image rain Removal(SSIR)、Progressive Recurrent Network(PReNet)、Bilateral Recurrent Network(BRN)进行比较,结果显示所提算法的性能最优。 展开更多
关键词 单图去雨 深度学习 龙格库塔模块 高效通道注意力 回传机制
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
5
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
融合注意力与上下文信息的皮肤癌图像分割模型 被引量:1
6
作者 支慧芳 韩建新 吴永飞 《计算机工程与设计》 北大核心 2024年第9期2859-2865,共7页
为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高... 为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高效通道注意力模块,重新校准权重并获得更高质量的分割图。在公共数据集ISIC 2017上验证改进模型,其结果表明,该模型召回率、F1分数达到85.29%、87.03%,与现有方法对比,在准确率、交并比、召回率、F1分数产生竞争性结果。 展开更多
关键词 病变分割 多尺度融合 注意力机制 上下文信息 卷积神经网络 U-Net型网络 坐标注意力 高效通道注意力
在线阅读 下载PDF
基于ECA-1D-CNN的TDLAS的静脉用药浓度定量分析方法研究
7
作者 朱永炳 蔡玉琴 +4 位作者 蒋力耀 雷春 滕龙 王德旺 陶治 《光谱学与光谱分析》 北大核心 2025年第5期1341-1347,共7页
静脉用药溶质浓度的定量分析一直是静配中心药物检测的研究热点,但常规的调配和复核手段都是借助人工操作,存在药液浓度把控受限、人工复核压力繁重且低效等问题,因此提出一种对静脉药物溶质浓度准确、便捷、无损的检测方法显得至关重... 静脉用药溶质浓度的定量分析一直是静配中心药物检测的研究热点,但常规的调配和复核手段都是借助人工操作,存在药液浓度把控受限、人工复核压力繁重且低效等问题,因此提出一种对静脉药物溶质浓度准确、便捷、无损的检测方法显得至关重要。由于传统的近红外光谱对低浓度液体检测有一定局限性,基于可调谐激光吸收光谱技术(TDLAS),研究了了一种基于高效注意力机制一维卷积神经网络(ECA-1D-CNN)的葡萄糖混合溶液浓度定量检测模型。为检测低浓度葡萄糖混合溶液,以TDLAS技术为基础,选择光强吸收率最高的980 nm波段作为激光器光源,通过光电传感器,获取药物浓度的透射光强信号,由锁相放大模块解调为二次谐波信号得到一共600个不同浓度的自建数据集,将样本按8∶2的比例划分为训练集和测试集。以600个药物浓度透射光强的二次谐波信号作为研究对象,采用ECA-1D-CNN进行葡萄糖混合溶液浓度的定量检测。该模型共有4个卷积层,均采用Relu激活函数激活,每个卷积层后添加1个BN层,每两个卷积层添加1个池化层,在第2个池化层后添加1个ECA,可以帮助网络模型更好地学习特征之间的关系,减少参数数量和改善模型的鲁棒性。首先,为了凸显1D-CNN模型的优势,使用相同的原始数据集在PCR、SVR、PLSR上进行建模并对比4种不同模型的预测效果。其次,在6种不同数据预处理的基础上,将ECA-1D-CNN模型与1D-CNN模型进行对比,以决定系数R2、绝对误差MAE、均方根误差RMSE作为评价指标来分析预测模型的泛化能力。结果表明,SG+Normalization预处理下的ECA-1D-CNN模型效果最优,该方法能够对6~30 mg·100 mL^(-1)的葡萄糖混合溶液浓度进行有效预测,其模型训练集R2可达到0.998,MAE为0.295,RMSE为0.343,测试集的R^(2)可达到0.993,MAE为0.498,RMSE为0.691。采用所提出的方法可以精准的预测静脉用药溶质的浓度,为智能化静配中心的无损检测提供了新的思路以及应用价值。 展开更多
关键词 葡萄糖混合溶液 TDLAS 一维卷积神经网络 高效通道注意力机制
在线阅读 下载PDF
基于MobileNetV3Small-ECA的水稻病害轻量级识别研究 被引量:17
8
作者 袁培森 欧阳柳江 +1 位作者 翟肇裕 田永超 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期253-262,共10页
为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上... 为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上微调优化。在开源水稻病害数据集上进行试验测试,试验结果表明,在非迁移学习下,识别准确率达到97.47%,在迁移学习下识别准确率达到99.92%,同时参数量减少26.69%。其次,通过Grad-CAM进行可视化,本文方法与其他注意力机制CBAM和SENET相比,ECA模块生成的结果与图像中病斑的位置和颜色更加一致,表明网络可以更好地聚焦水稻病害的特征,并且通过可视化和各水稻病害分析了误分类原因。本文方法实现了水稻病害识别模型的轻量化,使其能够在移动设备等资源受限的场景中部署,达到快速、高效、便携的目的。同时开发了基于Android的水稻病害识别系统,方便于在边缘端进行水稻病害识别分析。 展开更多
关键词 水稻病害识别 迁移学习 高效通道注意力机制 MobileNetV3Small 移动端部署
在线阅读 下载PDF
改进YOLOv5s-Seg的高效实时实例分割模型 被引量:5
9
作者 马冬梅 郭智浩 罗晓芸 《计算机工程与应用》 CSCD 北大核心 2024年第16期258-268,共11页
实例分割是图像分割的重要组成部分,同时也是计算机视觉领域的一个重要课题。然而现有实例分割模型不能在保证实时性的同时保证模型分割精度,因此在实时实例分割任务中一直存在精度过低、定位不精确的问题。针对此问题,提出了一种基于YO... 实例分割是图像分割的重要组成部分,同时也是计算机视觉领域的一个重要课题。然而现有实例分割模型不能在保证实时性的同时保证模型分割精度,因此在实时实例分割任务中一直存在精度过低、定位不精确的问题。针对此问题,提出了一种基于YOLOv5s-Seg改进的实时实例分割模型。以YOLOv5s-Seg作为网络的基础模型,主干网络选用Repvit m3网络,然后改进FPN结构,在FPN结构中将原始得到的C3卷积模块升级为RsRepVitBlock模块,并在其内部使用ECA注意力机制,最后采用SIoU作为模型的边界框损失函数。该算法在公开数据集PASCAL VOC 2012上的实验结果显示,改进后的模型分割精度mAP达到了65.7%,较原模型YOLOv5s-Seg提高了10.6个百分点。该模型大幅提升了分割精度,并且有效地改善了分割任务中定位不准确的问题。相较于其他模型,具有显著的精度优势和更好的模型稳定性。 展开更多
关键词 实时实例分割 YOLOv5s-Seg Repvit m3 RsRepVitBlock 高效通道注意力机制(eca) SIoU
在线阅读 下载PDF
基于MBDC和双重注意力的变电站人员穿戴检测 被引量:4
10
作者 纪超 侯威 +3 位作者 高鸣江 张凡 杨鹏 李小兵 《电子测量与仪器学报》 CSCD 北大核心 2023年第6期247-255,共9页
安全帽与工作服是变电站工作人员安全的重要保障,为解决现有检测模型对其检测精度低的问题,本文提出了MBDC和双重注意力的变电站人员穿戴检测算法。该算法提出了多分支深度卷积(multi branch deep convolution,MBDC)网络增加深度可分离... 安全帽与工作服是变电站工作人员安全的重要保障,为解决现有检测模型对其检测精度低的问题,本文提出了MBDC和双重注意力的变电站人员穿戴检测算法。该算法提出了多分支深度卷积(multi branch deep convolution,MBDC)网络增加深度可分离卷积层以增强特征提取的完备性;然后提出多通道交互注意力(multimodal interaction attention,MIA)增加模型对小目标的检测能力,并将MIA机制结合高效通道注意力(efficient channel attention,ECA)机制构成双重注意力机制,增强模型对于小目标和遮挡目标的识别精度;最后引入焦点损失函数和SIOU(scylla intersection over union)作为损失函数以解决正负样本不平衡问题并加快收敛速度。实验表明,本文算法全类平均精度达到84.88%,比原算法高9.92%,总体性能优于对比算法。 展开更多
关键词 变电站人员穿戴 多分支深度卷积 双重注意力机制 通道交互注意力 高效通道注意力
在线阅读 下载PDF
融合小尺寸动态蛇形卷积的太阳能电池板检测YOLO模型
11
作者 汪宇玲 常佳熠 《现代电子技术》 北大核心 2025年第11期114-120,共7页
针对太阳能电池板表面缺陷检测任务中检测精度低的问题,提出一种融合小尺寸动态蛇形卷积的太阳能电池板检测YOLO模型。主要设计了可适应管束状瑕疵的小尺寸动态蛇形卷积,增强了模型对裂纹缺陷的表征能力;同时在模型颈部加入高效通道注... 针对太阳能电池板表面缺陷检测任务中检测精度低的问题,提出一种融合小尺寸动态蛇形卷积的太阳能电池板检测YOLO模型。主要设计了可适应管束状瑕疵的小尺寸动态蛇形卷积,增强了模型对裂纹缺陷的表征能力;同时在模型颈部加入高效通道注意力机制,并融合加权梯度特征,增强了对关键特征的提取能力。所提方法基于公开数据集进行仿真实验,实验mAP@0.5可达88.1%,相较于YOLOv7、Faster R-CNN、YOLOX-S的平均精度均值分别提高了5%、15.8%、1.6%,可以更准确地完成太阳能电池表面缺陷检测任务。 展开更多
关键词 太阳能电池板 缺陷检测 梯度信息 动态蛇形卷积 高效通道注意力机制 YOLO模型
在线阅读 下载PDF
基于改进Hyper-YOLO的煤矿输送带异物检测方法
12
作者 李刚 朱宇 +6 位作者 杨庆贺 邹军鹏 才天 贺鹏 张亚兵 赵艺鸣 田鑫浩 《工矿自动化》 北大核心 2025年第7期114-121,共8页
基于YOLO系列的输送带异物检测技术已取得丰富的研究成果,但其颈部网络无法使相隔较远的特征层直接交换特征信息,引发小目标漏检、重复检测等问题。Hyper-YOLO可在颈部网络实现特征层之间跨层、跨位置的高阶关联,但会增加计算量,且降低... 基于YOLO系列的输送带异物检测技术已取得丰富的研究成果,但其颈部网络无法使相隔较远的特征层直接交换特征信息,引发小目标漏检、重复检测等问题。Hyper-YOLO可在颈部网络实现特征层之间跨层、跨位置的高阶关联,但会增加计算量,且降低对高频特征信息的敏感性,导致在噪声较为敏感的区域特征提取能力下降,预测边界框发生偏移。针对上述问题,提出一种基于改进Hyper-YOLO的煤矿输送带异物检测方法。在图像预处理阶段采用动态对比度受限自适应直方图均衡化(Dy-CLAHE)方法,将Laplacian算子引入对比度受限自适应直方图均衡化(CLAHE)框架,建立噪声水平与对比度限制阈值之间的动态映射关系,有效解决了粉尘环境下图像细节丢失和噪声放大的问题;对Hyper-YOLO进行改进,采用高效交并比(EIoU)损失函数优化边界框回归过程,提升了预测边界框定位精度,并在混合聚合网络(MANet)的深层和浅层嵌入高效通道注意力机制(ECA)模块,通过局部跨通道交互动态调整通道权重,有效平衡对高频和低频特征信息的敏感性,降低小目标异物的漏检率,同时通过简化快速空间金字塔池化(SimSPPF)模块,减少了冗余计算,在保证精度的同时提升了推理速度。实验结果表明:改进Hyper-YOLO在准确率和mAP@0.5指标上分别为94.2%和93.4%,相较于Hyper-YOLO提高了5.0%和3.5%,参数量为3.26×10^(6)个,召回率为87.7%,检测速度为158帧/s,满足煤矿井下异物实时检测的需求;在不同煤矿输送带异物检测场景下无漏检及重复检测情况,预测边界框更贴合异物。 展开更多
关键词 煤矿输送带 异物检测 Hyper-YOLO 动态对比度受限自适应直方图均衡 EIoU 高效通道注意力机制 简化快速空间金字塔池化
在线阅读 下载PDF
基于YOLO v7-ECA模型的苹果幼果检测 被引量:26
13
作者 宋怀波 马宝玲 +2 位作者 尚钰莹 温毓晨 张姝瑾 《农业机械学报》 EI CAS CSCD 北大核心 2023年第6期233-242,共10页
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention,ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型... 为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention,ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision,mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,F1值分别提高33.53、2.81、9.16、1.26、2.38、1.43个百分点,召回率相较于Faster R-CNN、SSD、YOLO v5、YOLO v6、YOLO v7网络模型分别提高5.0、4.5、1.3、3.7、1.8个百分点;单幅图像检测时间为28.9 ms,可实现苹果幼果的高效检测。针对幼果目标模糊、存在阴影和严重遮挡的情况,本研究采用550幅测试图像进行模型鲁棒性检验。在加噪模糊情况下,YOLO v7-ECA的mAP为91.1%,F1值为89.8%,与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比其mAP分别提高26.3、21.0、5.4、8.0、11.5、8.9个百分点,F1值分别提高27.19、7.08、8.50、4.20、3.94、4.67个百分点;在阴影情况下,YOLO v7-ECA的mAP为97.5%,F1值为95.36%,与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比其mAP分别提高14.8、8.8、2.1、2.4、5.4、2.5个百分点,F1值分别提高21.51、2.60、10.49、1.53、3.23、2.56个百分点;在严重遮挡情况下,YOLO v7-ECA的mAP为98.6%,F1值为94.8%,与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比其mAP分别提高21.7、13.7、2.3、2.4、4.8、2.2个百分点,F1值分别提高28.29、3.50、6.45、0.96、1.36、1.36个百分点。该网络模型可在保证网络模型精度的同时拥有较快的检测速度,且对场景模糊、阴影和严重遮挡等影响具有较好的鲁棒性。该研究可为幼果实时检测系统提供有效借鉴。 展开更多
关键词 苹果幼果 检测 YOLO v7 高效通道注意力机制 机器视觉
在线阅读 下载PDF
改进ConvNeXt网络的树种识别方法
14
作者 杨兵兵 许杰 《林业科学》 北大核心 2025年第2期31-39,共9页
【目的】为提高树种识别工作的效率和准确率,提出一种利用迁移学习策略并引入SimAM注意力机制和ECA通道注意力机制的ConvNeXt树种识别模型。【方法】以12种常见树种的树皮图像为研究对象,通过传统数据增强方法对数据进行扩充,防止模型... 【目的】为提高树种识别工作的效率和准确率,提出一种利用迁移学习策略并引入SimAM注意力机制和ECA通道注意力机制的ConvNeXt树种识别模型。【方法】以12种常见树种的树皮图像为研究对象,通过传统数据增强方法对数据进行扩充,防止模型过拟合。使用SimAM和ECA通道注意力机制构建以ConvNeXt为基础的改进网络,增强特征提取的SA-ConvNeXt、增强重要特征权重的E-ConvNeXt、结合两者的ES-ConvNeXt,测试数据集在增强前后对ES-ConvNeXt网络准确率的影响。使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络,与ES-ConvNeXt模型识别效果进行比较。【结果】SA-ConvNeXt和E-ConvNeXt准确率分别达到(95.14±0.42)%、(96.085±0.235)%,ES-ConvNeXt在增强后数据集测试的准确率达到(97.445±0.635)%,对单一树种识别准确率均超过93%,最高类别准确率达到99.79%,为最优方案。经数据增强后进行训练的模型与使用原始数据进行训练的模型相比,其验证集的准确率和损失值,无论是收敛速度还是最终稳定值都是最优。数据集相同时,使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络的识别准确率,分别为92.74%、94.47%、90.52%、92.85%、70.38%、94.72%,均低于新改进模型ES-ConvNeXt(97.81%),进一步说明了改进后的ESConvNeXt模型的有效性。【结论】数据增强对模型准确率提升有效,在数据增强后的数据集上,改进后的ESConvNeXt模型与其他模型相比可以更加准确地完成树种分类任务,在不同树种上也有较好的泛化能力。 展开更多
关键词 树种识别 ConvNeXt SimAM注意力机制 eca通道注意力机制
在线阅读 下载PDF
基于全局特征提取的无人机道路病害检测算法
15
作者 项彦茂 周明月 +2 位作者 李俊 谢喆 张小松 《计算机应用》 北大核心 2025年第S1期245-250,共6页
针对无人机(UAV)影像中道路小目标漏检和目标检测精度低、鲁棒性差等问题,设计一种基于全局特征提取的UAV道路病害检测算法GFE-RDD(Global Feature Extraction-Road Disease Detection)。将卷积神经网络(CNN)与Transformer融合的GFE-Tra... 针对无人机(UAV)影像中道路小目标漏检和目标检测精度低、鲁棒性差等问题,设计一种基于全局特征提取的UAV道路病害检测算法GFE-RDD(Global Feature Extraction-Road Disease Detection)。将卷积神经网络(CNN)与Transformer融合的GFE-Transformer模块嵌入主干网络,提升捕获长距离依赖关系的能力以获得全局上下文信息。为了更好地检测出小目标的道路病害,提出一个融合高效双通道注意力机制(EDA)的小目标检测头。另外,采用WIoUv3(Wise-Intersection over Union vision 3)作为网络的损失函数,解决训练数据中锚框质量差异较大的问题,并提高检测的准确性。在自制的道路多病害数据集上的实验结果表明,所提算法在道路病害检测任务中的F1分数达到0.765,mAP50达到0.796,均高于DETR(DEtection TRansformer)等当前主流算法,取得了较高的检测准确率。 展开更多
关键词 道路病害检测 WIoUv3 TRANSFORMER 小目标检测 高效通道注意力机制 全局特征提取
在线阅读 下载PDF
基于Res-DCGAN和改进AlexNet的稻谷病害识别方法
16
作者 余子怡 李正权 邢松 《传感器与微系统》 北大核心 2025年第6期38-42,共5页
针对稻谷病害之间差别细微、难以实现精确识别的问题,提出一种基于Res-DCGAN和改进AlexNet的稻谷病害识别方法。首先,针对数据集多样性不足的问题,使用基于残差优化的深度卷积生成对抗网络(Res-DCGAN)联合非生成式方法对数据集进行扩充... 针对稻谷病害之间差别细微、难以实现精确识别的问题,提出一种基于Res-DCGAN和改进AlexNet的稻谷病害识别方法。首先,针对数据集多样性不足的问题,使用基于残差优化的深度卷积生成对抗网络(Res-DCGAN)联合非生成式方法对数据集进行扩充;其次,设计基于高效通道注意力机制的多分支特征提取结构的AlexNet,使不同尺度特征相融合,同时聚焦图像关键信息,且引入批量归一化方法和全局平均池化层,防止过拟合,减少参数量;最后,引入联合损失函数,使模型同时专注于难分类的样本。本文采用的扩充数据集的方式相较于仅使用非生成式方式,精确率提高了2.2%,且改进后的模型准确率达99.05%。相较于传统的AlexNet,VGG16和Inception v3模型分别提高了3.67,2.84和1.97个百分点,其模型收敛更快,泛化能力更好。 展开更多
关键词 计算机视觉 卷积神经网络 高效通道注意力机制 生成对抗网络
在线阅读 下载PDF
基于EAST与SVTR的芯片表面字符识别方法
17
作者 阮红进 刘强 +1 位作者 姚子锴 谢谦 《计算机工程与设计》 北大核心 2025年第1期166-173,共8页
为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分... 为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分配,加强对重要特征的筛选。改进获得文本区域得分的损失函数,采用Dice损失缓解因图像背景面积过大导致误检的问题。文本方向校正算法对图像中任意方向的文本进行水平校正。由单一视觉模型的文本识别算法SVTR完成对字符的识别。实验结果表明,改进后文本检测算法的精确率、召回率较原算法分别提升了2.43%和4.66%,单帧图片的检测速度提升了0.005 s;添加文本方向校正算法后,识别准确率提升了1.92%。与现有方法对比,验证了该算法的有效性。 展开更多
关键词 芯片表面字符识别 文本检测 文本方向校正 文本识别 轻量化深度神经网络 高效通道注意力机制 损失函数
在线阅读 下载PDF
基于改进YOLO v7轻量化模型的自然果园环境下苹果识别方法 被引量:18
18
作者 张震 周俊 +1 位作者 江自真 韩宏琪 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期231-242,262,共13页
针对自然果园环境下苹果果实识别中,传统的目标检测算法往往很难在检测模型的检测精度、速度和轻量化方面实现平衡,提出了一种基于改进YOLO v7的轻量化苹果检测模型。首先,引入部分卷积(Partial convolution, PConv)替换多分支堆叠模块... 针对自然果园环境下苹果果实识别中,传统的目标检测算法往往很难在检测模型的检测精度、速度和轻量化方面实现平衡,提出了一种基于改进YOLO v7的轻量化苹果检测模型。首先,引入部分卷积(Partial convolution, PConv)替换多分支堆叠模块中的部分常规卷积进行轻量化改进,以降低模型的参数量和计算量;其次,添加轻量化的高效通道注意力(Efficient channel attention, ECA)模块以提高网络的特征提取能力,改善复杂环境下遮挡目标的错检漏检问题;在模型训练过程中采用基于麻雀搜索算法(Sparrow search algorithm, SSA)的学习率优化策略来进一步提高模型的检测精度。试验结果显示:相比于YOLO v7原始模型,改进后模型的精确率、召回率和平均精度分别提高4.15、0.38、1.39个百分点,其参数量和计算量分别降低22.93%和27.41%,在GPU和CPU上检测单幅图像的平均用时分别减少0.003 s和0.014 s。结果表明,改进后的模型可以实时准确地识别复杂果园环境中的苹果,模型参数量和计算量较小,适合部署于苹果采摘机器人的嵌入式设备上,为实现苹果的无人化智能采摘奠定了基础。 展开更多
关键词 苹果识别 自然果园环境 YOLO v7 PConv 高效通道注意力机制 麻雀搜索算法
在线阅读 下载PDF
基于改进YOLOv8的煤矿输送带异物检测 被引量:4
19
作者 洪炎 汪磊 +2 位作者 苏静明 汪瀚涛 李木石 《工矿自动化》 CSCD 北大核心 2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8... 现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。 展开更多
关键词 输送带异物检测 YOLOv8 SE网络 高效通道注意力机制 轻量化 小目标检测 自适应平均池化 自适应最大池化
在线阅读 下载PDF
一种改进的YOLOv5s航拍车辆检测算法 被引量:2
20
作者 张立国 沈明浩 +2 位作者 金梅 任婷婷 赵嘉士 《计量学报》 CSCD 北大核心 2024年第7期974-981,共8页
为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法。首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP... 为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法。首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP模块构成SPD-CSP模块,代替原有网络的下采样操作,减少特征提取时小目标有效信息的损失;最后,将通道注意力机制ECA模块引入到Backbone部分中,通过自适应地调整不同特征通道的权重系数,使得网络更加关注特征图中的关键信息,减少无关信息的干扰。实验结果表明:提出的算法在VisDrone数据集上,与YOLOv5s网络相比,均值平均精度P_(mAP 0.5)提高了6.4%,检测速度FPS达到65帧/s,能实时、精确地对航拍车辆进行检测。 展开更多
关键词 机器视觉 YOLOv5s SPD-CSP模块 航拍图像 深度学习 高效通道注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部