期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN和Transformer的轻量化电能质量扰动识别模型
被引量:
2
1
作者
张彼德
邱杰
+3 位作者
娄广鑫
周灿
罗蜻清
李天倩
《电力工程技术》
北大核心
2025年第1期69-78,共10页
针对目前基于深度学习的电能质量扰动(power quality disturbances,PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks,CNN)融合Transformer(CNN and Transformer,CaT)的轻量化P...
针对目前基于深度学习的电能质量扰动(power quality disturbances,PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks,CNN)融合Transformer(CNN and Transformer,CaT)的轻量化PQDs识别模型。首先,利用深度可分离卷积初步提取扰动信号的局部特征;其次,提出一种高效的软阈值模块,在不显著增加模型参数量与计算复杂度的同时减少特征中的噪声与冗余特征;然后,利用Transformer模型挖掘PQDs信号的全局特征;最后,通过池化层、线性层和Softmax层完成PQDs识别。仿真实验表明,文中所提CaT模型在参数量和浮点运算数较少的情况下能够有效完成PQDs识别,对PQDs信号识别准确率高,具有良好的噪声鲁棒性。同时,得益于轻量化和端到端的模型设计,CaT模型相对于其他深度学习模型的推理时间更短。
展开更多
关键词
电能质量扰动(PQDs)
轻量化
参数量
高效软阈值模块
深度可分离卷积
Transformer模型
在线阅读
下载PDF
职称材料
题名
基于CNN和Transformer的轻量化电能质量扰动识别模型
被引量:
2
1
作者
张彼德
邱杰
娄广鑫
周灿
罗蜻清
李天倩
机构
西华大学电气与电子信息学院
国网四川省电力公司成都供电公司
出处
《电力工程技术》
北大核心
2025年第1期69-78,共10页
基金
四川省科技计划资助项目(2023YFG0191)。
文摘
针对目前基于深度学习的电能质量扰动(power quality disturbances,PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks,CNN)融合Transformer(CNN and Transformer,CaT)的轻量化PQDs识别模型。首先,利用深度可分离卷积初步提取扰动信号的局部特征;其次,提出一种高效的软阈值模块,在不显著增加模型参数量与计算复杂度的同时减少特征中的噪声与冗余特征;然后,利用Transformer模型挖掘PQDs信号的全局特征;最后,通过池化层、线性层和Softmax层完成PQDs识别。仿真实验表明,文中所提CaT模型在参数量和浮点运算数较少的情况下能够有效完成PQDs识别,对PQDs信号识别准确率高,具有良好的噪声鲁棒性。同时,得益于轻量化和端到端的模型设计,CaT模型相对于其他深度学习模型的推理时间更短。
关键词
电能质量扰动(PQDs)
轻量化
参数量
高效软阈值模块
深度可分离卷积
Transformer模型
Keywords
power quality disturbances(PQDs)
lightweight
number of parameters
efficient soft threshold block
depthwise separable convolution
Transformer model
分类号
TM743 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN和Transformer的轻量化电能质量扰动识别模型
张彼德
邱杰
娄广鑫
周灿
罗蜻清
李天倩
《电力工程技术》
北大核心
2025
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部