期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
引入全局上下文模块和高效注意力机制的车辆跟踪算法 被引量:5
1
作者 李畅 王一丁 +1 位作者 孙芮 何忠贺 《科学技术与工程》 北大核心 2022年第11期4424-4433,共10页
孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪... 孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪模型特性,从剪裁特征图、调整网络总步长和嵌入高效通道注意力模块三方面对其进行优化,高效提取特征的同时增强模型的差异化认知,并在分支网络引入全局上下文模块(non-local network,NLNet),增强跟踪模型对目标车辆的整体感知。经实验证明,提出的算法在低分辨率、光照变化和复杂背景的情况下跟踪速度和鲁棒性显著提升。在VOT2018和OTB2015数据集中测试均能得到较好的跟踪结果,与经典跟踪模型SiamFC相比,在OTB2015数据集中测试的跟踪精度提高了5.5%,跟踪成功率提高了2.7%,跟踪速度提高了14%可达98帧/s。 展开更多
关键词 孪生神经网络 车辆跟踪 高效注意力模块 全局上下文模块
在线阅读 下载PDF
基于混合注意力生成对抗网络的遥感图像去雾方法
2
作者 马六 毛克彪 郭中华 《智慧农业(中英文)》 2025年第2期172-182,共11页
[目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提... [目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提高去雾技术的效果,满足农业、城市规划等领域对图像质量日益增长的需求,现有方法亟需改进。[方法]本研究提出了一种混合注意力生成对抗网络(Hybrid Attention-Based Generative Adversarial Network,HAB-GAN)。该模型通过结合高效通道注意力模块与空间注意力模块,嵌入生成对抗网络架构中,实现了对遥感图像去雾效果的显著提升。高效通道注意力模块通过降低全局特征聚合中的冗余信息,既保留了性能,又减少了模型复杂度;空间注意力模块则从局部到全局对遥感图像中的雾化区域进行识别和聚焦,增强了对这些区域的恢复能力。这种方法能够更加有效地应对遥感图像中复杂多变的景观,尤其适用于农业等需要高质量遥感数据的领域。[结果与讨论]在RESISC(Remote Sensing Image Scene Classification)45数据集上,与现有的其他注意力机制去雾模型,如SpA GAN和HyA-GAN进行比较,HAB-GAN模型去雾效果更优,其中峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)分别增加了2.64和1.14 dB,结构相似度(Structural Similarity Index,SSIM)分别增加了0.0122和0.0019。此外,消融实验验证了混合注意力机制的有效性,去除HAB模块后,HAB-GAN模型的PSNR下降了3.87 dB,SSIM下降了0.0334。[结论]提出的HAB-GAN模型显著提升了遥感图像的去雾效果,使生成的图像更加接近无雾图像,特别是对于复杂的农业、环境监测等场景具有重要应用价值。HAB模块在提升模型性能方面发挥了关键作用,为未来的遥感图像处理和相关领域提供了有力的技术支持。 展开更多
关键词 遥感图像 深度学习 生成对抗网络 高效通道注意力模块 空间注意力模块 去雾
在线阅读 下载PDF
基于多重多尺度融合注意力网络的建筑物提取 被引量:8
3
作者 杨栋杰 高贤君 +3 位作者 冉树浩 张广斌 王萍 杨元维 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1924-1934,共11页
针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度... 针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度特征融合注意力(MFA). MECA设计在模型跳跃连接中,通过权重配比强化有效特征信息,避免注意力向无效特征的过渡分配;采用多重特征提取,减少有效特征的损失. MFA被嵌入模型底部,结合并行连续中小尺度空洞卷积与通道注意力,获得不同的空间特征与光谱维度特征,缓解空洞卷积造成的大型建筑物像素缺失问题. MMFA-Net通过融合MECA和MFA,提高了建筑物提取结果的完整度和精确率.将模型在WHU、 Massachusetts和自绘建筑物数据集上进行验证,在定量评价方面优于其他5种对比方法,F_(1)分数和IoU分别达到93.33%、87.50%;85.38%、74.49%和88.46%、79.31%. 展开更多
关键词 深度学习 高分辨遥感影像 建筑物提取 多尺度特征融合 高效通道注意力模块 U-Net
在线阅读 下载PDF
改进注意力机制的电梯场景下危险品检测方法 被引量:6
4
作者 郭奕裕 周箩鱼 +1 位作者 刘新瑜 李尧 《计算机应用》 CSCD 北大核心 2023年第7期2295-2302,共8页
针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高... 针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高效卷积块注意力模块(ECBAM)并嵌入主干特征提取网络中。在ECBAM模块的通道注意力部分,使用一维卷积替换两个全连接层,既降低了卷积块注意力模块(CBAM)的复杂度又提高了检测精度。最后提出一种多帧协同算法,通过结合多张图片的危险品检测结果以减少危险品入侵电梯的误报警。实验结果表明:改进后模型比YOLOX-s的平均精度均值(mAP)提升了1.05个百分点,浮点计算量降低了34.1%,模型体积减小了42.8%。可见改进后模型降低了实际应用中的误报警,且满足电梯场景下危险品检测的精度和速度要求。 展开更多
关键词 危险品检测 电梯 YOLOX-s 深度可分离卷积 高效卷积块注意力模块 一维卷积 多帧协同算法
在线阅读 下载PDF
基于MES−YOLOv5s的综采工作面大块煤检测算法 被引量:6
5
作者 徐慈强 贾运红 田原 《工矿自动化》 CSCD 北大核心 2024年第3期42-47,141,共7页
综采工作面的目标具有高速运动、多尺度、遮挡等特点,现有的目标检测算法存在精度低、模型占用的内存大、硬件依赖强等问题。针对上述问题,提出了一种基于MES−YOLOv5s的综采工作面大块煤检测算法。采用轻量化设计,将MobileNetV3作为主... 综采工作面的目标具有高速运动、多尺度、遮挡等特点,现有的目标检测算法存在精度低、模型占用的内存大、硬件依赖强等问题。针对上述问题,提出了一种基于MES−YOLOv5s的综采工作面大块煤检测算法。采用轻量化设计,将MobileNetV3作为主干网络,以减小模型占用的内存,提高CPU端的检测速度;在颈部网络添加高效多尺度注意力(EMA)模块,融合不同尺度的上下文信息,并进一步减少计算开销;采用SIoU损失函数代替CIoU损失函数,以提高训练速度和推理准确性。消融实验结果表明:MobileNetV3大幅减少了模型占用的内存和检测时间,但mAP损失严重;EMA模块和SIoU损失函数可在一定程度上恢复损失的精度,同时保证模型在CPU上具有较高的检测速度,满足煤矿井下目标实时检测需求。对比实验结果表明,与DETR,YOLOv5n,YOLOv5s,YOLOv7模型相比,MES−YOLOv5s模型综合性能最好,mAP为84.6%,模型占用的内存为11.2 MiB,在CPU端的检测时间为31.8 ms,在高速运动、多尺度、遮挡和多目标的工况环境下能够保持较高的召回率和精度。 展开更多
关键词 综采工作面 目标检测 大块煤检测 YOLOv5s MobileNetV3 高效多尺度注意力模块 SIoU损失函数
在线阅读 下载PDF
基于深度学习的脊椎CT图像分割 被引量:4
6
作者 黄昆 张俊华 普钟 《电子测量技术》 北大核心 2022年第20期151-159,共9页
脊椎CT图像分割是脊椎三维重建可视化的关键。针对脊椎CT图像中脊椎边缘模糊,结构复杂,形状多变等问题,基于深度学习方法提出一种双解码器网络。该网络在编码解码网络U-Net结构基础上增加了一条结构相同的并行解码分支,两个解码分支可... 脊椎CT图像分割是脊椎三维重建可视化的关键。针对脊椎CT图像中脊椎边缘模糊,结构复杂,形状多变等问题,基于深度学习方法提出一种双解码器网络。该网络在编码解码网络U-Net结构基础上增加了一条结构相同的并行解码分支,两个解码分支可以互补地提取图像特征。并且,在编码与解码之间加入双重特征融合模块,解决网络在下采样和上采样过程中造成的语义信息丢失问题。同时用密连混合卷积模块代替原始卷积模块,提高网络对多尺度特征的提取能力。此外加入高效注意力模块,使网络在空间上注重学习感兴趣区域,在通道上抑制无关信息。在CSI2014公开数据集上进行测试,Dice系数达到0.970,Jaccard系数达到0.945,召回率达到0.962。实验结果表明,该网络能够提高脊椎分割精度,具有较好的泛化能力,可以满足临床脊椎CT图像分割需求。 展开更多
关键词 脊椎分割 深度学习 双解码器网络 双重特征融合模块 密连混合卷积模块 高效注意力模块
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:2
7
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
基于改进YOLOv5的菇房平菇目标检测与分类研究 被引量:19
8
作者 王磊磊 王斌 +3 位作者 李东晓 赵义鹏 王春霞 张迪迪 《农业工程学报》 EI CAS CSCD 北大核心 2023年第17期163-171,共9页
随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you on... 随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该研究提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。 展开更多
关键词 目标检测 分类 模型 高效通道注意力模块 平菇 加权双向特征金字塔 EIoU损失函数
在线阅读 下载PDF
基于改进ShuffleNetV2的敏感内容识别与应用 被引量:2
9
作者 徐源 张玉杰 《传感器与微系统》 CSCD 北大核心 2023年第3期164-168,共5页
针对目前公共场合大屏显示系统视频内容审核方法识别准确率低、难以部署在控制器上的问题,提出一种基于改进ShuffleNetV2的敏感内容识别方法。首先,在Block2模块拼接特征通道后引入高效通道注意力(ECA)模块,加强重要特征通道的权重;其次... 针对目前公共场合大屏显示系统视频内容审核方法识别准确率低、难以部署在控制器上的问题,提出一种基于改进ShuffleNetV2的敏感内容识别方法。首先,在Block2模块拼接特征通道后引入高效通道注意力(ECA)模块,加强重要特征通道的权重;其次,采用最大池化替换Block2模块中的深度可分离卷积,减少复杂背景的干扰。将训练得到的模型进行转换并通过参数量化压缩模型,部署在以RK3399Pro为核心处理器的嵌入式控制器上,设计应用程序实现对视频文件中敏感内容的识别。实际测试结果表明:改进的ShuffleNetV2敏感内容识别模型准确率提升了3.85%,计算量减小了12.99%,在控制器上的检测速度达到每帧图像17 ms,并取得较好的识别效果,该方法可有效审核视频内容,并为大屏显示系统视频内容安全提供了可靠保障。 展开更多
关键词 内容审核 深度学习 高效通道注意力模块 嵌入式应用
在线阅读 下载PDF
基于改进高分辨率神经网络的多目标行人跟踪 被引量:4
10
作者 张红颖 贺鹏艺 彭晓雯 《光学精密工程》 EI CAS CSCD 北大核心 2023年第6期860-871,共12页
针对行人多目标跟踪过程中目标被遮挡时产生的检测、跟踪失败问题,提出了一种改进型高分辨率神经网络作为检测网络。首先,为了增强网络对于行人目标的初始特征提取能力,在高分辨率神经网络的基础上,对网络的主干部分引入二代瓶颈残差块... 针对行人多目标跟踪过程中目标被遮挡时产生的检测、跟踪失败问题,提出了一种改进型高分辨率神经网络作为检测网络。首先,为了增强网络对于行人目标的初始特征提取能力,在高分辨率神经网络的基础上,对网络的主干部分引入二代瓶颈残差块结构,提升感受野和特征表达力;其次,设计了添加二层高效通道注意力模块的残差检测块架构,并通过该架构替换了原有网络在多尺度信息交换阶段中的残差检测块,以提高了整个网络系统的测试性能;最后,通过选择适当的参数对网络进行了全面地训练,并通过多个测试集对算法测试。测试结果显示,本文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的跟踪准确度分别提升0.1%,1.6%,0.8%。本文算法可以良好地应用在目标较多且遮挡面积较大的特殊情景,同时对于较长时间视频序列的追踪稳定性也大大提高。 展开更多
关键词 目标身份切换 高分辨率神经网络 高效通道注意力模块 二代瓶颈残差块 FairMOT
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部