在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线...在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。展开更多
针对基于电压源转换器的高压直流(high voltage direct current based voltage source converter,VSC-HVDC)输电系统,该文提出电磁暂态–机电暂态多尺度建模方法并验证多尺度仿真算法的准确、快速和灵活性。该模型采用频移分析(shifted-...针对基于电压源转换器的高压直流(high voltage direct current based voltage source converter,VSC-HVDC)输电系统,该文提出电磁暂态–机电暂态多尺度建模方法并验证多尺度仿真算法的准确、快速和灵活性。该模型采用频移分析(shifted-frequency analysis,SFA)等多尺度建模方法。首先推导移频(shifted frequency,SF)域和dq域之间的解析变换关系,并提出用于系统特性分析的VSC移频多尺度模型;其次,选择性插入π模型获得直流输电线的多尺度暂态模型;最后,通过调整仿真参数,如仿真时间步长和移动频率,使得建立的模型能够灵活仿真具有多个时间尺度和不同网络位置的各种暂态。采用两端和五端VSC-HVDC输电系统作为算例,仿真结果对比表明,提出的模型和算法能够精确模拟高频暂态,快速仿真慢变化暂态,降低计算成本。此外,多尺度模型还可提高VSC-HVDC输电系统电磁–机电暂态混合仿真的灵活性。展开更多
文摘在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。
文摘针对基于电压源转换器的高压直流(high voltage direct current based voltage source converter,VSC-HVDC)输电系统,该文提出电磁暂态–机电暂态多尺度建模方法并验证多尺度仿真算法的准确、快速和灵活性。该模型采用频移分析(shifted-frequency analysis,SFA)等多尺度建模方法。首先推导移频(shifted frequency,SF)域和dq域之间的解析变换关系,并提出用于系统特性分析的VSC移频多尺度模型;其次,选择性插入π模型获得直流输电线的多尺度暂态模型;最后,通过调整仿真参数,如仿真时间步长和移动频率,使得建立的模型能够灵活仿真具有多个时间尺度和不同网络位置的各种暂态。采用两端和五端VSC-HVDC输电系统作为算例,仿真结果对比表明,提出的模型和算法能够精确模拟高频暂态,快速仿真慢变化暂态,降低计算成本。此外,多尺度模型还可提高VSC-HVDC输电系统电磁–机电暂态混合仿真的灵活性。