作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System...作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System,version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地再现这些可预测来源。展开更多
含油微藻的破碎是微藻制油过程中的重要环节。为此,利用清华大学自主研制的高压脉冲电源(THU-PEF4)系统,针对小球藻的光合活性和叶绿素质量浓度这2个生物量,重点考察了高压脉冲电场强度、脉冲宽度、脉冲重复频率、电场极性及样品电导率...含油微藻的破碎是微藻制油过程中的重要环节。为此,利用清华大学自主研制的高压脉冲电源(THU-PEF4)系统,针对小球藻的光合活性和叶绿素质量浓度这2个生物量,重点考察了高压脉冲电场强度、脉冲宽度、脉冲重复频率、电场极性及样品电导率对小球藻处理效果的影响,在此基础上结合双荧光染色法和流式细胞仪研究了高压脉冲电场(PEF)对微藻细胞的穿孔破碎效果。研究发现高压脉冲电场强度和脉冲注入能量密度是影响高压脉冲电场处理效果的关键因素,而脉冲宽度、脉冲重复频率、电场极性对小球藻的处理效果影响不大。当电场强度从2.5 MV/m增加到5.0 MV/m时,20 m S/m电导率下的小球藻细胞破碎率从17.21%增加至83.29%;当脉冲注入能量密度从8.9 k J/L增加到149.52 k J/L时,4.5 MV/m电场强度作用下的小球藻细胞破碎率从9.78%提高到81.78%。展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co...Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.展开更多
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated s...In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.展开更多
According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ...According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.展开更多
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
The high-flowing sand-concrete (HFSC) containing natural sands as aggregate was carried out. The high fluidity and stability of HFSC can be achieved by tailoring the mix design parameters, such as fine to coarse san...The high-flowing sand-concrete (HFSC) containing natural sands as aggregate was carried out. The high fluidity and stability of HFSC can be achieved by tailoring the mix design parameters, such as fine to coarse sand ratio, dosage of additions, water to binder ratio and dosage of admixtures. Mini-cone slump test, v-fl.mnel time test and viscosity model parameters were used to characterize the behaviour of HFSC in fresh state. The mechanical compressive strength in 28 d was also determined. A factorial design approach was used to establish models highlighting the effect of each mix-parameter on measured properties of HFSC. The derived models are valid for mixtures made with 0 to 0.3 of dune sand to total sand ratio, 82 to 418 kg/m3 of marble powder, 0.42 to 0.46 of water/binder ratio and 1.3% to 1.9% of superplasticizer high water-reducer. The results show that the derived models constitute very efficient means for understanding the influence of key mix-parameters on HFSC properties and are useful in selecting the optimum mix proportions, by simulating their impact on fluidity, stability and compressive strength.展开更多
Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. I...Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
文摘作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System,version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地再现这些可预测来源。
文摘含油微藻的破碎是微藻制油过程中的重要环节。为此,利用清华大学自主研制的高压脉冲电源(THU-PEF4)系统,针对小球藻的光合活性和叶绿素质量浓度这2个生物量,重点考察了高压脉冲电场强度、脉冲宽度、脉冲重复频率、电场极性及样品电导率对小球藻处理效果的影响,在此基础上结合双荧光染色法和流式细胞仪研究了高压脉冲电场(PEF)对微藻细胞的穿孔破碎效果。研究发现高压脉冲电场强度和脉冲注入能量密度是影响高压脉冲电场处理效果的关键因素,而脉冲宽度、脉冲重复频率、电场极性对小球藻的处理效果影响不大。当电场强度从2.5 MV/m增加到5.0 MV/m时,20 m S/m电导率下的小球藻细胞破碎率从17.21%增加至83.29%;当脉冲注入能量密度从8.9 k J/L增加到149.52 k J/L时,4.5 MV/m电场强度作用下的小球藻细胞破碎率从9.78%提高到81.78%。
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金Projects(50438020 50578162) supported by the National Natural Sceince Foundation of China
文摘Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.
基金Project(FRF-GF-19-012AZ)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.
基金Project(U1134203)supported by the National Natural Science Foundation of China
文摘According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
文摘The high-flowing sand-concrete (HFSC) containing natural sands as aggregate was carried out. The high fluidity and stability of HFSC can be achieved by tailoring the mix design parameters, such as fine to coarse sand ratio, dosage of additions, water to binder ratio and dosage of admixtures. Mini-cone slump test, v-fl.mnel time test and viscosity model parameters were used to characterize the behaviour of HFSC in fresh state. The mechanical compressive strength in 28 d was also determined. A factorial design approach was used to establish models highlighting the effect of each mix-parameter on measured properties of HFSC. The derived models are valid for mixtures made with 0 to 0.3 of dune sand to total sand ratio, 82 to 418 kg/m3 of marble powder, 0.42 to 0.46 of water/binder ratio and 1.3% to 1.9% of superplasticizer high water-reducer. The results show that the derived models constitute very efficient means for understanding the influence of key mix-parameters on HFSC properties and are useful in selecting the optimum mix proportions, by simulating their impact on fluidity, stability and compressive strength.
文摘Portland cement(PC) containing high-volume fly ash(HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin(MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash(FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 ℃ with an interval of 200 ℃ for 2 h. The results were analyzed by different techniques named X-ray diffraction(XRD), thermogravimetry(TGA) and scanning electron microscopy(SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.