影像分割是面向对象影像分析的基础和关键。针对传统影像分割方法地物边界依附性差、易受影像噪声影响等问题,提出一种简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)的高分辨率遥感影像分割方法。该方法首先用SLIC算法对...影像分割是面向对象影像分析的基础和关键。针对传统影像分割方法地物边界依附性差、易受影像噪声影响等问题,提出一种简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)的高分辨率遥感影像分割方法。该方法首先用SLIC算法对影像过分割生成SLIC超像素,之后根据相似性规则对SLIC超像素进行合并实现影像分割;然后通过构造Lab颜色空间下的五维特征参数度量影像像素的局部特征差异,并通过SLIC算法把具有相似性特征的像素聚类生成超像素,克服影像噪声对分割结果的影响;最后根据相似性合并规则以超像素为基本单元进行区域合并,从而达到分割目的。实验结果表明,所提出方法具有良好的高分辨率遥感影像分割结果。展开更多
影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advan...影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advanced SRG,ASRG)和层次区域生长(hierarchical region growing,HRG)3个步骤。利用Gabor纹理特征定义纹理均匀性,将种子自动放置在HRI中同一纹理组成区域的中心位置;在SRG阶段,将HRI光谱信息与斑块形状信息相结合,提出了一种新的合并规则,以提高SRG过分割的精度与分割结果中各个斑块排列的紧凑性;在HRG阶段,提出了一种自适应的阈值,可以更好地保持多尺度分割的特性;在实验部分,采用3景HRI验证了上述方法。利用监督的影像分割评价方法定量评价了该方法的分割精度,并与另外2种主流的遥感影像分割算法进行了对比。结果表明,该方法可以得到令人满意的分割效果。展开更多
文摘影像分割是面向对象影像分析的基础和关键。针对传统影像分割方法地物边界依附性差、易受影像噪声影响等问题,提出一种简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)的高分辨率遥感影像分割方法。该方法首先用SLIC算法对影像过分割生成SLIC超像素,之后根据相似性规则对SLIC超像素进行合并实现影像分割;然后通过构造Lab颜色空间下的五维特征参数度量影像像素的局部特征差异,并通过SLIC算法把具有相似性特征的像素聚类生成超像素,克服影像噪声对分割结果的影响;最后根据相似性合并规则以超像素为基本单元进行区域合并,从而达到分割目的。实验结果表明,所提出方法具有良好的高分辨率遥感影像分割结果。
文摘影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advanced SRG,ASRG)和层次区域生长(hierarchical region growing,HRG)3个步骤。利用Gabor纹理特征定义纹理均匀性,将种子自动放置在HRI中同一纹理组成区域的中心位置;在SRG阶段,将HRI光谱信息与斑块形状信息相结合,提出了一种新的合并规则,以提高SRG过分割的精度与分割结果中各个斑块排列的紧凑性;在HRG阶段,提出了一种自适应的阈值,可以更好地保持多尺度分割的特性;在实验部分,采用3景HRI验证了上述方法。利用监督的影像分割评价方法定量评价了该方法的分割精度,并与另外2种主流的遥感影像分割算法进行了对比。结果表明,该方法可以得到令人满意的分割效果。