期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于3G和Wi-Fi的高分辨率视觉传感器传输控制方案(英文) 被引量:4
1
作者 肖德琴 黄顺彬 +1 位作者 殷建军 冯健昭 《农业工程学报》 EI CAS CSCD 北大核心 2015年第9期167-172,共6页
智能视觉传感器技术因其低成本和图像高效采集优势成为当今无线视觉传感器网络(wireless vision sensor network,WVSN)的研究热点。该文在之前基于ARM平台S3C6410设计的低成本高分辨率农业视觉传感器(agricultural high resolution visi... 智能视觉传感器技术因其低成本和图像高效采集优势成为当今无线视觉传感器网络(wireless vision sensor network,WVSN)的研究热点。该文在之前基于ARM平台S3C6410设计的低成本高分辨率农业视觉传感器(agricultural high resolution vision sensor,HRAVS)设计基础上,进行了网络和远程控制扩展,设计了一种基于WCDMA和Wi-Fi的高分辨率视觉传感器远程传输控制方案(vision sensor remote transmission control schema for the HRAVS,VSRTC)。使新型HRAVS节点可以利用有线、Wi-Fi、3G和4G等支持WVSN和农业物联网的应用。该文详细设计了VSRTC的应用体系结构、传输控制协议、应用软件。利用扩展的网络化视觉感知传感器,在华南农业农业大学试验农场部署了10个图像采集节点构成的WVSN,并开展了25d的运行测试,测试了新型节点的稳定性、图像采集与编码的性能,采集图像的平均耗时,以及在不同分辨率下的视频帧速率等。结果表明,该节点能够有效地支持命令响应式、周期响应式、视频流3种采集模式;在重传方案支持下所有节点指令丢失率在1%以内;在非联网状态下节点本地工作模式下,节点在1.3、2.0和3.2 Mpixel下采集图像的最短节点平均耗时分别约为6.2、8.2和11.1 s,最大视频帧速率分别为58.7、34.6、16.4帧/s;在全网络环境中,节点在1.3、2.0和3.2 Mpixel下采集图像的最短节点平均耗时分别约为17.6、26.9和49.6 s,最大视频帧速率分别为20.2、16.1、9.3帧/s。该方案对实时性要求不太高的农业领域来说,基本能满足其高分辨率图像和视频传输的需要。 展开更多
关键词 无线传感器网络 视觉 传输控制协议 高分辨率农业视觉传感器 视觉传感器远程传输控制
在线阅读 下载PDF
基于解耦区域校准的高分辨率超像素生成算法
2
作者 王亚雄 魏云超 +1 位作者 钱学明 朱利 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2664-2677,共14页
超像素分割是计算机视觉领域的一项重要任务,该任务将具有相似属性的像素分组到称为超像素的簇中.图像超像素不仅可以增益图像注释,而且还是各种下游应用的基础,如分割、光流估计和深度估计.尽管超像素分割技术取得了显著进展,特别是随... 超像素分割是计算机视觉领域的一项重要任务,该任务将具有相似属性的像素分组到称为超像素的簇中.图像超像素不仅可以增益图像注释,而且还是各种下游应用的基础,如分割、光流估计和深度估计.尽管超像素分割技术取得了显著进展,特别是随着深度学习方法的出现,但现有解决方案由于GPU内存和计算能力的限制,一直无法有效处理高分辨率图像.针对这个问题,作者提出了一种名为区域解耦校准的高分辨率超像素网络(Patch Calibration Network,PCNet)的新型深度学习框架,通过采用解耦的一致性学习策略,解决了现有方法的局限性.这种方法允许通过从低分辨率输入预测高分辨率输出来高效生成高分辨率超像素结果,从而绕过了GPU内存限制.PCNet的一个关键贡献是解耦的区域块校准(DPC)分支,它将高分辨率图像块作为额外输入,以保留细节并增强边界像素分配.为了改善边界像素的识别,作者利用二进制掩模设计了一种动态引导训练机制.这种机制鼓励网络专注于区域内的主要边界,将任务从多类分类简化为二分类问题.这一创新策略不仅减少了网络优化的复杂性,而且显著提高了边界检测的精度.本文通过在包括Mapillary Vistas、BIG和新创建的Face-Human数据集在内的多样化数据集上进行广泛的实验,证明了PCNet的有效性.结果表明,PCNet能够成功处理5K分辨率图像,并与现有的最先进的SCN方法相比,实现了更优越的性能,后者在处理高分辨率输入时存在困难.作者的贡献包括开发了PCNet,一种针对高分辨率超像素分割的深度学习解决方案,引入了解耦的区域校准架构,并构建了一个超高分辨率基准测试集,用于评估高分辨率场景中超像素分割算法的性能.本文首先回顾了超像素分割领域的相关工作,然后详细介绍了PCNet框架,接着展示了实验结果并与最先进的方法进行了比较.结论部分总结了研究结果并概述了未来研究的潜在方向.代码、预训练模型和新的基准数据集的可用性无疑将促进高分辨率超像素分割领域的进一步发展.总之,本文在超像素分割领域提供了一个重要的进步,提供了一种能够高效、准确处理高分辨率图像的解决方案.所提出的PCNet框架,凭借其创新的DPC分支和动态引导训练机制,为未来在计算机视觉领域的研究和应用提供了一个有前景的方向.本文的代码、预训练模型以及新构建的评估基准数据集可在https://github.com/wangyxxjtu/PCNet上获取. 展开更多
关键词 超像素分割 图像分割 高分辨率视觉 深度学习 人工智能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部