Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱...Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱振幅来提高稀疏性,对Radon系数分辨率提高效果有限.本文提出一种以信号振幅相对大小衡量Radon系数稀疏性的尺度不变稀疏度量(Scale-Invariant Sparsity Measure,SSM)函数,并以L_(1)/L_(2)范数作为其光滑近似.针对L_(1)/L_(2)正则化的非线性,改进交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对其求解.合成数据与实际地震资料处理结果表明,该方法能够增强一次波与多次波在Radon域的分辨率,降低Radon变换的能量扩散,提高多次波压制效果;同时该方法能够较好地压制随机噪声,方法具有一定的稳健性.展开更多
光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以...光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以高阶像差约束控制作为进一步优化方向,设计了一种单孔径宽视场高分辨率成像光学系统。设计的系统视场角为70°,各视场调制传递函数(Modulation Transfer Function,MTF)曲线接近衍射极限,中心视场衍射MTF在550 lp/mm处优于0.2,系统成像质量良好,各项指标满足设计要求,实现了宽视场、高分辨率设计。展开更多
文摘Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱振幅来提高稀疏性,对Radon系数分辨率提高效果有限.本文提出一种以信号振幅相对大小衡量Radon系数稀疏性的尺度不变稀疏度量(Scale-Invariant Sparsity Measure,SSM)函数,并以L_(1)/L_(2)范数作为其光滑近似.针对L_(1)/L_(2)正则化的非线性,改进交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对其求解.合成数据与实际地震资料处理结果表明,该方法能够增强一次波与多次波在Radon域的分辨率,降低Radon变换的能量扩散,提高多次波压制效果;同时该方法能够较好地压制随机噪声,方法具有一定的稳健性.
文摘光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以高阶像差约束控制作为进一步优化方向,设计了一种单孔径宽视场高分辨率成像光学系统。设计的系统视场角为70°,各视场调制传递函数(Modulation Transfer Function,MTF)曲线接近衍射极限,中心视场衍射MTF在550 lp/mm处优于0.2,系统成像质量良好,各项指标满足设计要求,实现了宽视场、高分辨率设计。