A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteris...A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
基金Project(2682013BR009)supported by the Fundamental Research Funds of the Central Universities,ChinaProject(2011AA11A103-2-2)the National High-Technology Research and Development Program of China
文摘A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.