期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
新能源汽车驱动电机冷却系统劣化故障预测
1
作者
柳炽伟
黄韵迪
《汽车安全与节能学报》
北大核心
2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行...
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。
展开更多
关键词
新能源汽车
驱动电机冷却系统
故障预测
最小二乘支持向量机(LSSVM)
蝗虫算法(GOA)
主成分分析(PCA)
在线阅读
下载PDF
职称材料
题名
新能源汽车驱动电机冷却系统劣化故障预测
1
作者
柳炽伟
黄韵迪
机构
中山职业技术学院机电工程学院
中山职业技术学院信息工程学院
出处
《汽车安全与节能学报》
北大核心
2025年第2期277-285,共9页
基金
广东省教育厅特色创新科研项目(2023KTSCX367)
中山职业技术学院科研项目(KYB2303)。
文摘
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。
关键词
新能源汽车
驱动电机冷却系统
故障预测
最小二乘支持向量机(LSSVM)
蝗虫算法(GOA)
主成分分析(PCA)
Keywords
new energy vehicles
drive-motor cooling-system
fault prediction
least squares support vector machine(LSSVM)
grasshopper optimization algorithm(GOA)
principal component analysis(PCA)
分类号
U472.9 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
新能源汽车驱动电机冷却系统劣化故障预测
柳炽伟
黄韵迪
《汽车安全与节能学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部