基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用...基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。展开更多
弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了...弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。展开更多
针对在役埋地管道可靠度评价的难题,建立了基于非接触磁特性参数的埋地管道可靠度马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)定量评价模型。试验材料为L245N钢管试件,预制有不同尺寸缺陷,对不同内压下埋地管件进行非接触磁记...针对在役埋地管道可靠度评价的难题,建立了基于非接触磁特性参数的埋地管道可靠度马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)定量评价模型。试验材料为L245N钢管试件,预制有不同尺寸缺陷,对不同内压下埋地管件进行非接触磁记忆检测,并定量研究试验中缺陷变量与所获非接触磁特性参数之间的相关性,试验表明磁特性参数ΔH(y)和k(x,y)可分别敏感地反映并表征缺陷深度d、缺陷长度L的变化规律,建立了不同压力下ΔH(y)-d和k(x,y)-L非线性回归函数,经优化修正后的最大误差分别为6.07%和8.79%。进一步结合Modified B31G评价标准,在蒙特卡洛(Monte Carlo,MC)法基础上,引入能够反映管道损伤动态时变性的马尔科夫链,建立了基于非接触磁特性参数的埋地管道可靠度(MCMC)定量评价模型。通过算法对比与现场试验,验证了模型的有效性,为在实际工程中、不开挖条件下对埋地管道进行可靠度定量评价,提供了一种新的方法。展开更多
传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法中状态数的选取常依赖于主观经验,用于农机装备负载模拟时,状态数取值不当将导致负载模拟精度降低或算法运行时间冗长。针对此问题,该研究提出一种基于伪损伤一致性的状态数...传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法中状态数的选取常依赖于主观经验,用于农机装备负载模拟时,状态数取值不当将导致负载模拟精度降低或算法运行时间冗长。针对此问题,该研究提出一种基于伪损伤一致性的状态数优选方法。首先确定MCMC算法中状态数的初选范围,然后分别计算范围内不同状态数所对应的负载模拟结果,最后以生成的模拟负载与原始载荷之间的损伤一致性为评价准则确定优选状态数。利用拖拉机关键零部件的实测载荷数据对该方法进行验证。结果表明,随着状态数的提高,模拟负载与原始载荷之间的损伤一致性变化趋于平稳,算法运算时长增速不断提高,相比于传统方法,基于优选状态数的MCMC算法能够得到伪损伤差异在1%以内的负载模拟结果,与载荷谱编制的目标需求更加匹配,在保证模拟结果精度的同时有效减少运算成本。该研究能够为农机装备关键零部件的动态仿真分析及可靠性试验提供更加可靠的数据支撑。展开更多
文摘基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。
文摘弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。
文摘传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法中状态数的选取常依赖于主观经验,用于农机装备负载模拟时,状态数取值不当将导致负载模拟精度降低或算法运行时间冗长。针对此问题,该研究提出一种基于伪损伤一致性的状态数优选方法。首先确定MCMC算法中状态数的初选范围,然后分别计算范围内不同状态数所对应的负载模拟结果,最后以生成的模拟负载与原始载荷之间的损伤一致性为评价准则确定优选状态数。利用拖拉机关键零部件的实测载荷数据对该方法进行验证。结果表明,随着状态数的提高,模拟负载与原始载荷之间的损伤一致性变化趋于平稳,算法运算时长增速不断提高,相比于传统方法,基于优选状态数的MCMC算法能够得到伪损伤差异在1%以内的负载模拟结果,与载荷谱编制的目标需求更加匹配,在保证模拟结果精度的同时有效减少运算成本。该研究能够为农机装备关键零部件的动态仿真分析及可靠性试验提供更加可靠的数据支撑。