在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟...在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪算法.该算法将Hamiltonian动力学融入MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合.在提议阶段,为抑制由Gibbs采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项.同时,提出自适应步长的Hamiltonian动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差.提出的跟踪算法可以避免传统的基于随机游动的MCMC跟踪算法所存在的局部最优问题,提高了跟踪的准确性而不需要额外的计算时间.实验结果表明,该算法在处理多种类型的突变运动时表现出出色的处理能力.展开更多
文摘在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪算法.该算法将Hamiltonian动力学融入MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合.在提议阶段,为抑制由Gibbs采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项.同时,提出自适应步长的Hamiltonian动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差.提出的跟踪算法可以避免传统的基于随机游动的MCMC跟踪算法所存在的局部最优问题,提高了跟踪的准确性而不需要额外的计算时间.实验结果表明,该算法在处理多种类型的突变运动时表现出出色的处理能力.
文摘多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是地下水中的主要有机污染物之一,地下水中多环芳烃运移数值模拟在开展地下水污染高效修复中起重要作用。在实际地下水污染条件下,由于难以准确刻画含水介质中的胶体类型及其分布,通常忽略污染物-胶体共运移机制,建立的模型存在结构误差,导致模型预测具有显著偏差。本研究以荧蒽和菲为研究对象,针对忽略的PAHs-胶体的共运移机制,使用高斯过程回归(Gaussian process regression,GPR)修正模型结构误差,建立耦合数据驱动和物理机制的多环芳烃运移模型。通过饱和砂柱PAHs运移室内试验,对比分析了未耦合和耦合数据驱动方法的模型预测结果。结果表明,忽略PAHs-胶体的共运移机制的地下水多环芳烃运移模型具有显著的模型结构误差,直接进行参数识别不能弥补忽略的共运移机制,预测结果存在显著偏差。使用GPR模型可以有效补偿PAHs-胶体的共运移机制,修正地下水模型的结构误差。验证期荧蒽、菲预测结果的95%置信区间对观测数据的覆盖率分别提升了56.84%和19.04%,纳什系数分别提升了40.09%和21.73%,均方根误差分别降低了33.10%和55.38%,平均绝对误差分别降低了32.00%和46.34%,地下水多环芳烃运移模型的预测性能显著提高。本研究提出的耦合数据驱动和物理机制方法为场地地下水多环芳烃运移精准模拟提供了可行思路,有助于实现地下水污染的精准高效修复。