弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了...弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。展开更多
基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用...基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。展开更多
文摘弹道导弹在再入过程中为了提高自身突防能力往往伴随着分导现象。由于分导弹头数目未知,距离目标近且再入速度非常相近,使其以团状形态运动,在未知导弹任何先验信息前提下如何对分导弹头进行快速关联已成为亟待解决的难题。该文提出了一种改进的实时滑窗马尔可夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)次优数据关联算法,它应用蒙特卡洛采样方法对监控区域的测量集合进行组合优化,获得最大的后验概率密度进而逼近马氏链的平稳分布。该算法结合弹头分导实际情况,重新分配关联假设权值并优化了继承性,极大地减小了关联时间。仿真结果表明该算法与经典的多假设算法相比,关联概率随着目标密集程度增加而显著提高,并且计算量远小于多假设算法。
文摘基于马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法的时域波达方向估计算法通过构造马尔科夫链的方式来对波达方向进行估计,但是现有的算法在马尔科夫链的收敛速度和结果上并没有表现出很好的鲁棒性。为了优化算法的性能,采用多(短)链并行的方式代替原来的长链生成方式,提高了算法收敛的稳定性;并对特定模型下的构造过程进行分析,优化了状态空间,提高了算法的搜索效率;同时结合多混合的MCMC方法,进一步提高了算法估计的精确度和收敛速度。仿真结果表明,改进后的算法对波达方向估计的准确性和实时性都有很大提升。