马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化...马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化。利用静态和动态分配策略将算法中的多个输入链分配到各CPU;独立计算并通过共享内存实现进程间通信;主进程回收各单元计算结果,合成最终的马尔可夫链输出矩阵。采用控制变量法分析不同样本和马尔可夫链数量下的算法加速情况。结果表明在计算规模较大、动态负载均衡的条件下易于获得较好的加速比,在4个CPU以内时效果显著,之后随着CPU增加加速效果出现波动或趋于稳定。研究表明并行化MCMC能够利用多核CPU硬件设施获得加速效果,更多核数的加速性能存在进一步优化的空间。展开更多
为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建...为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。展开更多
提出大型电力系统可靠性评估的一种新的蒙特卡洛模拟方法—马尔可夫链蒙特卡洛方法(Markov chain Monte Carlo,MCMC)。MCMC方法是一种特殊的蒙特卡洛方法,它将随机过程中的马尔可夫过程引入到蒙特卡洛模拟中,实现动态蒙特卡洛模拟。该...提出大型电力系统可靠性评估的一种新的蒙特卡洛模拟方法—马尔可夫链蒙特卡洛方法(Markov chain Monte Carlo,MCMC)。MCMC方法是一种特殊的蒙特卡洛方法,它将随机过程中的马尔可夫过程引入到蒙特卡洛模拟中,实现动态蒙特卡洛模拟。该方法通过重复抽样,建立一个平稳分布与系统概率分布相同的马尔可夫链,从而得到系统的状态样本。由于MCMC方法考虑了系统各个状态间的相互影响,相比于随机采样的蒙特卡洛方法所得到的独立样本序列,更准确模拟了电力系统运行实际情况。IEEE-RTS 24节点算例表明,该算法可快速收敛,节省计算时间,提高计算速度。同时,由于每条马尔可夫链均收敛于同一个分布,即所谓平稳分布,所以算法具有良好的稳定性。对西北330 kV电网的可靠性评估再次表明了该方法的正确性和有效性以及该方法用于大型电力系统的可靠性评估的优越性和潜力。展开更多
为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型...为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。展开更多
文摘马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化。利用静态和动态分配策略将算法中的多个输入链分配到各CPU;独立计算并通过共享内存实现进程间通信;主进程回收各单元计算结果,合成最终的马尔可夫链输出矩阵。采用控制变量法分析不同样本和马尔可夫链数量下的算法加速情况。结果表明在计算规模较大、动态负载均衡的条件下易于获得较好的加速比,在4个CPU以内时效果显著,之后随着CPU增加加速效果出现波动或趋于稳定。研究表明并行化MCMC能够利用多核CPU硬件设施获得加速效果,更多核数的加速性能存在进一步优化的空间。
文摘为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。
文摘为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。