飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption m...飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption minimization strategy,ECMS)的基础上,引入动态规划(dynamic programming,DP)控制策略获取最优电池荷电状态(state of charge,SOC)轨迹,通过实时调整遗传算法(genetic algorithm,GA)求得的初始最优等效因子,确保实际SOC轨迹与最优轨迹相符,从而搭建了一种可实时控制的自适应等效能耗最小控制策略(adaptive equivalent consumption minimization strategy,A-ECMS),最终在中国轻型商用车行驶工况(China light-duty commercial vehicle test cycle,CLTC-C)工况下对三种控制策略进行了仿真对比。结果表明,在A-ECMS控制下,较传统ECMS相比,加装PGS-FHEP的飞轮混合动力汽车(flywheel hybrid electric vehicle,FHEV)综合能耗降低了2.51%,控制效果更接近DP控制策略;系统能量回收率可达57.72%,其中,飞轮以机械能形式回收占比23.64%。此外,能量回收过程中,飞轮的参与使电池的峰值功率显著降低。展开更多
文摘飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption minimization strategy,ECMS)的基础上,引入动态规划(dynamic programming,DP)控制策略获取最优电池荷电状态(state of charge,SOC)轨迹,通过实时调整遗传算法(genetic algorithm,GA)求得的初始最优等效因子,确保实际SOC轨迹与最优轨迹相符,从而搭建了一种可实时控制的自适应等效能耗最小控制策略(adaptive equivalent consumption minimization strategy,A-ECMS),最终在中国轻型商用车行驶工况(China light-duty commercial vehicle test cycle,CLTC-C)工况下对三种控制策略进行了仿真对比。结果表明,在A-ECMS控制下,较传统ECMS相比,加装PGS-FHEP的飞轮混合动力汽车(flywheel hybrid electric vehicle,FHEV)综合能耗降低了2.51%,控制效果更接近DP控制策略;系统能量回收率可达57.72%,其中,飞轮以机械能形式回收占比23.64%。此外,能量回收过程中,飞轮的参与使电池的峰值功率显著降低。