A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular veloc...A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular velocity and the shuttle orientation angles. In accordance with the hybrid-controlling characteristics of the aerodynamic surfaces and reaction control system of the spacecraft, the control torque commands are allocated into the actuators such as the aerodynamic surfaces and reaction control system by using the optimal control selection allocation algorithm. The simulation of the spacecraft re-entry attitude controlling demonstrates the robust, de-coupled tracking performance of the proposed method and its validity.展开更多
文摘A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular velocity and the shuttle orientation angles. In accordance with the hybrid-controlling characteristics of the aerodynamic surfaces and reaction control system of the spacecraft, the control torque commands are allocated into the actuators such as the aerodynamic surfaces and reaction control system by using the optimal control selection allocation algorithm. The simulation of the spacecraft re-entry attitude controlling demonstrates the robust, de-coupled tracking performance of the proposed method and its validity.