期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于MFO优化BP神经网络构建冷鲜肉品质预测模型
1
作者 王丽 闫子康 +1 位作者 杜金 王远亮 《食品工业科技》 CAS 北大核心 2024年第21期310-321,共12页
为能准确预测冷鲜肉在贮藏中品质的变化规律及质量安全,本文探究贮藏温度(0、4和25℃)对冷鲜肉菌落总数、TVB-N、pH、水分含量、色度和生物胺含量的影响,确定冷鲜肉的特征品质指标。基于反向传播(Backpropagation,BP)神经网络和飞蛾火... 为能准确预测冷鲜肉在贮藏中品质的变化规律及质量安全,本文探究贮藏温度(0、4和25℃)对冷鲜肉菌落总数、TVB-N、pH、水分含量、色度和生物胺含量的影响,确定冷鲜肉的特征品质指标。基于反向传播(Backpropagation,BP)神经网络和飞蛾火焰优化(Moth-Flame Optimization,MFO)BP神经网络,利用特征指标作为训练数据,构建不同贮藏温度下冷鲜肉的品质预测模型,快速准确评价和预测食品的质量安全。结果表明,不同贮藏温度下冷鲜肉的菌落总数、pH、TVB-N、色泽和生物胺含量随着贮藏时间的延长均呈上升趋势(P<0.05),且各指标在不同贮藏温度下的变化规律不一致,温度越高,腐败变质的速度越快。通过相关性分析得出菌落总数和TVB-N为冷鲜肉品质特征指标,以特征指标为训练数据构建BP神经网络和MFO优化BP神经网络模型。结果显示,MFO优化BP神经网络优于单一的BP神经网络模型,指标菌落总数和TVB-N通过BP神经网络模型训练后的R值分别为0.95018、0.94283,通过MFO算法优化训练后的R值分别为0.97538、0.98001,更接近于1,且优化后的RMSE、MSE和MAE值相对较小,其模型拟合度更好,在整个贮藏期的预测性能更好,准确率更高。因此,MFO优化BP神经网络可用于预测冷鲜肉在贮藏过程中品质的变化规律。 展开更多
关键词 冷鲜肉 松鼠葡萄球菌 预测模型 反向传播(bp)神经网络 飞蛾火焰优化(mfo)bp神经网络
在线阅读 下载PDF
基于改进MFO优化空间谱的埋地管道泄漏定位
2
作者 谢晓贤 薛生 +1 位作者 郑晓亮 王强 《振动与冲击》 EI CSCD 北大核心 2024年第17期278-288,312,共12页
现有管道泄漏声波定位法仅能提供泄漏所在区域。为实现区域内地下泄漏源的精确定位,基于地面均匀圆形阵列(uniform circular array, UCA),提出选择性反向学习飞蛾火焰优化(selective ppposition based moth-flame optimization, SOMFO)... 现有管道泄漏声波定位法仅能提供泄漏所在区域。为实现区域内地下泄漏源的精确定位,基于地面均匀圆形阵列(uniform circular array, UCA),提出选择性反向学习飞蛾火焰优化(selective ppposition based moth-flame optimization, SOMFO)结合双波谱的埋地管道泄漏定位方法。针对土壤P1波和S波共存且波速不明确等问题,构造地面UCA的双波谱函数,以其最大输出为优化目标,使用SOMFO寻优双波速度及泄漏源三维坐标共5个参数,并设计了多孔泄漏定位策略。搭建了埋地管道泄漏试验装置,通过互谱解卷绕相位的直线特性验证了P1波和S波的存在。试验结果表明,基于SOMFO优化双波谱的定位方法可准确估计波速及三维坐标,定位误差最大为0.066 m。此外,研究了多孔泄漏及寻优算法对定位精度的影响。与现有两种精确定位方法相比,新方法对单孔泄漏的定位精度分别提升9.68%和24.32%,多孔泄漏分别提升49.17%和61.15%。 展开更多
关键词 埋地管道泄漏 双波谱 反向学习 飞蛾火焰优化(mfo) 多孔泄漏定位
在线阅读 下载PDF
基于MFO-SVR的球磨机出粉量估算 被引量:2
3
作者 宋宇 陆金桂 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第10期1347-1352,1362,共7页
针对球磨机出粉量难以测量的问题,文章借助以数据驱动为基础的软测量技术,建立了基于支持向量回归机(support vector regression,SVR)的球磨机出粉量估算模型。为减小模型的误差,使用飞蛾火焰优化(moth-flame optimization,MFO)算法对SV... 针对球磨机出粉量难以测量的问题,文章借助以数据驱动为基础的软测量技术,建立了基于支持向量回归机(support vector regression,SVR)的球磨机出粉量估算模型。为减小模型的误差,使用飞蛾火焰优化(moth-flame optimization,MFO)算法对SVR的惩罚因子C以及径向基函数(radial basis function,RBF)核系数g进行优化。为验证MFO算法的可靠性,将此算法与粒子群优化(particle swarm optimization,PSO)算法、遗传算法(genetic algorithm,GA)进行比较,分别建立了球磨机出粉量的MFO-SVR、PSO-SVR、GA-SVR模型,试验结果表明MFO-SVR估算模型对出粉量有较好的预测和泛化能力。 展开更多
关键词 球磨机出粉量 软测量 支持向量回归机(SVR) 飞蛾火焰优化(mfo) 粒子群优化(PSO) 遗传算法(GA)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部