期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CSM-YOLO:一种面向飞机表面缺陷检测的轻量化高精度网络
1
作者 介战铎 张争明 +2 位作者 黄浩然 郝明 赵俭邦 《空军工程大学学报》 北大核心 2025年第5期11-21,共11页
针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换... 针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换主干网络C2f模块以动态增强多尺度特征、提高模型对关键特征信息的捕获、提取、利用能力,解决因下采样引起的特征信息丢失问题。其次,使用跨层直连方式改进Slim-Neck特征融合网络应用于模型颈部,实现提高模型计算效率的同时减少信息丢失,提高检测精度。最后,使用最小点距离交并比损失(MPDIoU Loss)提高边界框回归精确性,有效提高小目标缺陷检测精度,减少误检和漏检情况。实验结果表明,CSM-YOLO模型兼顾高精度、轻量化,对机体表面缺陷取得最高检测精度88.34%,较基线模型YOLOv8n提高2.92%,较YOLOv3-tiny、YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv9t、YOLOv12n算法提升明显。在模型参数量和计算量方面,CSM-YOLO的参数量和计算量分别为2.67×10^(6)/s和7.68×10^(9)/s,较基线模型YOLOv8n分别减少0.34×10^(6)/s和0.41×10^(9)/s,实现了同时兼顾精度提高和模型轻量化。CSM-YOLO在飞机机体表面缺陷检测数据集上取得了显著的性能提升,为机体表面缺陷的自动化检测提供了有效的解决方案。 展开更多
关键词 飞机表面缺陷检测 YOLOv8 模型轻量化 空间-通道协同注意力 MPDIoU损失 Slim-Neck
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部