期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CSM-YOLO:一种面向飞机表面缺陷检测的轻量化高精度网络
1
作者
介战铎
张争明
+2 位作者
黄浩然
郝明
赵俭邦
《空军工程大学学报》
北大核心
2025年第5期11-21,共11页
针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换...
针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换主干网络C2f模块以动态增强多尺度特征、提高模型对关键特征信息的捕获、提取、利用能力,解决因下采样引起的特征信息丢失问题。其次,使用跨层直连方式改进Slim-Neck特征融合网络应用于模型颈部,实现提高模型计算效率的同时减少信息丢失,提高检测精度。最后,使用最小点距离交并比损失(MPDIoU Loss)提高边界框回归精确性,有效提高小目标缺陷检测精度,减少误检和漏检情况。实验结果表明,CSM-YOLO模型兼顾高精度、轻量化,对机体表面缺陷取得最高检测精度88.34%,较基线模型YOLOv8n提高2.92%,较YOLOv3-tiny、YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv9t、YOLOv12n算法提升明显。在模型参数量和计算量方面,CSM-YOLO的参数量和计算量分别为2.67×10^(6)/s和7.68×10^(9)/s,较基线模型YOLOv8n分别减少0.34×10^(6)/s和0.41×10^(9)/s,实现了同时兼顾精度提高和模型轻量化。CSM-YOLO在飞机机体表面缺陷检测数据集上取得了显著的性能提升,为机体表面缺陷的自动化检测提供了有效的解决方案。
展开更多
关键词
飞机表面缺陷检测
YOLOv8
模型轻量化
空间-通道协同注意力
MPDIoU损失
Slim-Neck
在线阅读
下载PDF
职称材料
题名
CSM-YOLO:一种面向飞机表面缺陷检测的轻量化高精度网络
1
作者
介战铎
张争明
黄浩然
郝明
赵俭邦
机构
空军工程大学航空机务士官学校
[
[
出处
《空军工程大学学报》
北大核心
2025年第5期11-21,共11页
基金
国家自然科学基金(522750696)。
文摘
针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换主干网络C2f模块以动态增强多尺度特征、提高模型对关键特征信息的捕获、提取、利用能力,解决因下采样引起的特征信息丢失问题。其次,使用跨层直连方式改进Slim-Neck特征融合网络应用于模型颈部,实现提高模型计算效率的同时减少信息丢失,提高检测精度。最后,使用最小点距离交并比损失(MPDIoU Loss)提高边界框回归精确性,有效提高小目标缺陷检测精度,减少误检和漏检情况。实验结果表明,CSM-YOLO模型兼顾高精度、轻量化,对机体表面缺陷取得最高检测精度88.34%,较基线模型YOLOv8n提高2.92%,较YOLOv3-tiny、YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv9t、YOLOv12n算法提升明显。在模型参数量和计算量方面,CSM-YOLO的参数量和计算量分别为2.67×10^(6)/s和7.68×10^(9)/s,较基线模型YOLOv8n分别减少0.34×10^(6)/s和0.41×10^(9)/s,实现了同时兼顾精度提高和模型轻量化。CSM-YOLO在飞机机体表面缺陷检测数据集上取得了显著的性能提升,为机体表面缺陷的自动化检测提供了有效的解决方案。
关键词
飞机表面缺陷检测
YOLOv8
模型轻量化
空间-通道协同注意力
MPDIoU损失
Slim-Neck
Keywords
aircraft surface defect detection
YOLOv8
model lightweighting
spatial-channel cooperative attention
MPDIoU loss
Slim-Neck
分类号
V267 [航空宇航科学与技术—航空宇航制造工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
CSM-YOLO:一种面向飞机表面缺陷检测的轻量化高精度网络
介战铎
张争明
黄浩然
郝明
赵俭邦
《空军工程大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部