期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-KELM的煤与瓦斯突出预测研究
1
作者 王小生 尹亚红 +2 位作者 涂军 张小健 杨晋 《能源与环保》 2025年第3期60-64,共5页
煤与瓦斯突出是煤矿开采过程中常见的一种地质灾害,为保障井下工作人员的生命安全和国民经济的稳定增长,融合智能优化算法和机器学习算法,以核极限学习机(KELM)作为基准预测模型,结合粒子群算法(PSO)优化KELM关键参数,规避了人为预设导... 煤与瓦斯突出是煤矿开采过程中常见的一种地质灾害,为保障井下工作人员的生命安全和国民经济的稳定增长,融合智能优化算法和机器学习算法,以核极限学习机(KELM)作为基准预测模型,结合粒子群算法(PSO)优化KELM关键参数,规避了人为预设导致的性能缺陷,提高预测模型分类精度。结合现场实测数据,对指标预处理进行有效性分析,验证优化预处理后的模型精度较未处理有所提升;以预处理后的数据样本作为模型输入,对各基准预测模型进行对比,证明了KELM基准预测模型的稳定性和优越性;将PSO-KELM模型与其他常用模型进行30次预测对比实验。结果表明,PSO-KELM模型平均预测准确率达到86.33%,较其他模型具有更好的预测精度和更快的收敛速度,为煤与瓦斯突出预测工作提供了一种新的有效方法和理论支撑。 展开更多
关键词 PSO-KELM模型 煤与瓦斯突出灾害 风险预测粒子群算法 核极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部