为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模...为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。展开更多
随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预...随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预测精度视为长期重点工作。为此,提出一种基于短期风电功率预测误差分布特性统计与波动特性分析的风电功率预测修正方法。首先,考虑误差时序-条件特点对误差进行基于改进非参数核密度估计法(kernel density estimation,KDE)的误差概率密度分布特性分析,得出不同置信水平下的风电功率预测置信区间,以实现预测误差的分层划分。其次,采用变分模态分解算法(variational mode decomposition,VMD)将风电功率预测误差序列分解为趋势分量和随机分量,针对2类误差分量特点展开分类预测,并对最终所得误差结果进行波动性分析。最后,结合误差分层划分结果与误差波动特性分析进行综合判断,提出针对各类情况的误差补偿方案,从而获得修正后的短期风电功率预测值。实际算例表明,所提误差补偿方法可将风电功率月均方根误差较补偿前减少2.6个百分点,平均绝对误差较补偿前减少2.4个百分点,该方法能够有效减小风电功率预测误差,提升短期风电功率预测精度。展开更多
随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题...随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题,提出了一种基于特征优选与相似相本融合的长短期记忆网络与注意力机制(long short term memory-long short term memory,LSTM-AM)短期风电功率预测模型。首先,利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,Lasso)回归进行输入特征优选,减少冗余;然后,采用长短期记忆网络与注意力机制建立LSTM-AM融合网络模型;最后,通过欧氏距离计算提取相似历史样本,与模型输出加权作为最终预测值。实验结果表明,所提出的方法相比传统方法预测性能更优,在风电功率预测中表现出更高的准确性,能够为电力系统规划运行和可再生能源的深入应用提供支撑。展开更多
文摘为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。
文摘随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预测精度视为长期重点工作。为此,提出一种基于短期风电功率预测误差分布特性统计与波动特性分析的风电功率预测修正方法。首先,考虑误差时序-条件特点对误差进行基于改进非参数核密度估计法(kernel density estimation,KDE)的误差概率密度分布特性分析,得出不同置信水平下的风电功率预测置信区间,以实现预测误差的分层划分。其次,采用变分模态分解算法(variational mode decomposition,VMD)将风电功率预测误差序列分解为趋势分量和随机分量,针对2类误差分量特点展开分类预测,并对最终所得误差结果进行波动性分析。最后,结合误差分层划分结果与误差波动特性分析进行综合判断,提出针对各类情况的误差补偿方案,从而获得修正后的短期风电功率预测值。实际算例表明,所提误差补偿方法可将风电功率月均方根误差较补偿前减少2.6个百分点,平均绝对误差较补偿前减少2.4个百分点,该方法能够有效减小风电功率预测误差,提升短期风电功率预测精度。
文摘随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题,提出了一种基于特征优选与相似相本融合的长短期记忆网络与注意力机制(long short term memory-long short term memory,LSTM-AM)短期风电功率预测模型。首先,利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,Lasso)回归进行输入特征优选,减少冗余;然后,采用长短期记忆网络与注意力机制建立LSTM-AM融合网络模型;最后,通过欧氏距离计算提取相似历史样本,与模型输出加权作为最终预测值。实验结果表明,所提出的方法相比传统方法预测性能更优,在风电功率预测中表现出更高的准确性,能够为电力系统规划运行和可再生能源的深入应用提供支撑。