期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于层间互相关感知损失的风格迁移方法
1
作者
庄轩权
李彩霞
黎培兴
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第6期126-135,共10页
深度学习在风格迁移领域的应用使一系列以图片艺术风格化为核心的产品真正落地,而从像素级损失向基于Gram矩阵的感知损失的转变是其中最关键的跨越。Gram矩阵在艺术风格特征的提取上有良好的效果,但其局限于同等级语义特征间相关性统计...
深度学习在风格迁移领域的应用使一系列以图片艺术风格化为核心的产品真正落地,而从像素级损失向基于Gram矩阵的感知损失的转变是其中最关键的跨越。Gram矩阵在艺术风格特征的提取上有良好的效果,但其局限于同等级语义特征间相关性统计的做法并不能作为艺术风格的充分表示。自Gram矩阵被提出以来,一系列研究并未对其进行充分的研究和改进,而是关注于模型结构的设计以提高风格迁移的速度。提出使用层间互相关矩阵作为Gram矩阵的代替或补充进行风格迁移任务的风格损失函数计算。实验表明,在得到相似水平输出结果的情况下,使用层间互相关矩阵方法可以降低20%的计算时间。
展开更多
关键词
风格
迁移
GRAM矩阵
卷积神经网络
风格损失函数
感知
损失
深度学习
在线阅读
下载PDF
职称材料
题名
基于层间互相关感知损失的风格迁移方法
1
作者
庄轩权
李彩霞
黎培兴
机构
中山大学数学学院
中山大学广东省计算科学重点实验室
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第6期126-135,共10页
基金
广东省基础与应用基础研究基金(2020B1515310007)
中山大学广东省计算科学重点实验室(2020B1212060032)。
文摘
深度学习在风格迁移领域的应用使一系列以图片艺术风格化为核心的产品真正落地,而从像素级损失向基于Gram矩阵的感知损失的转变是其中最关键的跨越。Gram矩阵在艺术风格特征的提取上有良好的效果,但其局限于同等级语义特征间相关性统计的做法并不能作为艺术风格的充分表示。自Gram矩阵被提出以来,一系列研究并未对其进行充分的研究和改进,而是关注于模型结构的设计以提高风格迁移的速度。提出使用层间互相关矩阵作为Gram矩阵的代替或补充进行风格迁移任务的风格损失函数计算。实验表明,在得到相似水平输出结果的情况下,使用层间互相关矩阵方法可以降低20%的计算时间。
关键词
风格
迁移
GRAM矩阵
卷积神经网络
风格损失函数
感知
损失
深度学习
Keywords
style transfer
Gram matrix
convolutional neural network
style loss function
perceptual loss
deep learning
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于层间互相关感知损失的风格迁移方法
庄轩权
李彩霞
黎培兴
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2020
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部