The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion ...Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion for unstable motion and occurrence mechanism was studied. A comparison was performed between the oscillation responses of the stay cable obtained from calculated model and previous results. The results indicate that the analysis model can reflect the main characteristics of wind-rain-induced vibrationt of the cable which is amplitude- and velocity-restricted, and it is probably related with the periodic vortex shedding of wake flow. It is essential for the occurrence of rain-wind-induced or wind-induced vibration of cable that the derivative of lift coefficient with respect to transient angle of attack is less than zero. When rain-wind-induced vibration occurs, the aerodynamic force has a dual function for the vibration, and the maximum amplitude of stayed-cable is determined by the relative value of aerodynamic exciting force and aerodynamic damping force.展开更多
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Rain-wind-induced vibration of cable was studied based on previous research achievements. According to the quasi-steady assumption, the governing equation of vertical motion of the cable was derived and the criterion for unstable motion and occurrence mechanism was studied. A comparison was performed between the oscillation responses of the stay cable obtained from calculated model and previous results. The results indicate that the analysis model can reflect the main characteristics of wind-rain-induced vibrationt of the cable which is amplitude- and velocity-restricted, and it is probably related with the periodic vortex shedding of wake flow. It is essential for the occurrence of rain-wind-induced or wind-induced vibration of cable that the derivative of lift coefficient with respect to transient angle of attack is less than zero. When rain-wind-induced vibration occurs, the aerodynamic force has a dual function for the vibration, and the maximum amplitude of stayed-cable is determined by the relative value of aerodynamic exciting force and aerodynamic damping force.