期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PSO优化多尺度一维卷积神经网络的风机基础螺栓松动诊断 被引量:5
1
作者 徐培文 陈仁祥 +3 位作者 胡小林 杨黎霞 唐林林 林立 《振动与冲击》 EI CSCD 北大核心 2022年第4期86-92,共7页
为在非经验指导下获取多尺度一维卷积神经网络中卷积核数目和尺度最优参数,实现风机基础螺栓松动智能诊断,提出粒子群优化(particle swarm optimization, PSO)多尺度一维卷积神经网络的风机基础螺栓松动诊断方法。首先,获取风机一维原... 为在非经验指导下获取多尺度一维卷积神经网络中卷积核数目和尺度最优参数,实现风机基础螺栓松动智能诊断,提出粒子群优化(particle swarm optimization, PSO)多尺度一维卷积神经网络的风机基础螺栓松动诊断方法。首先,获取风机一维原始振动信号,划分训练集与验证集;然后,将多尺度一维卷积神经网络中卷积核数目和尺度作为PSO的粒子,以验证精度作为适应度值,根据适应度值更新粒子速度和位置,经训练后获得最优卷积核数目和尺度参数下的多尺度一维卷积神经网络;最后,输入测试样本,得到风机基础螺栓松动诊断结果。在稳定转速和升降速下进行风机基础螺栓松动诊断试验,结果表明,PSO优化多尺度一维卷积神经网络的风机基础螺栓松动诊断方法可在非经验指导下获取最优参数,可从一维原始信号中提取出有效松动特征,具备良好的松动诊断效果。 展开更多
关键词 风机基础螺栓 松动诊断 多尺度一维卷积神经网络 粒子群优化(PSO) 适应度值
在线阅读 下载PDF
多尺度一维卷积神经网络的风机基础螺栓松动智能检测 被引量:6
2
作者 陈仁祥 徐培文 +3 位作者 韩坤林 曾力 王帅 朱玉清 《振动与冲击》 EI CSCD 北大核心 2022年第22期301-307,共7页
为精细化表征风机基础螺栓松动状态特征,实现对风机基础螺栓松动的智能检测,提出多尺度一维卷积神经网络的风机基础螺栓松动智能检测方法。首先,以风机运行时振动时域信号作为多尺度一维卷积神经网络的输入,摆脱对信号处理和专业知识的... 为精细化表征风机基础螺栓松动状态特征,实现对风机基础螺栓松动的智能检测,提出多尺度一维卷积神经网络的风机基础螺栓松动智能检测方法。首先,以风机运行时振动时域信号作为多尺度一维卷积神经网络的输入,摆脱对信号处理和专业知识的依赖,并最大程度保留原始信号特征;然后,通过交替的多尺度卷积层和池化层对时域信号特征进行学习,其中多尺度卷积层设置不同尺度的卷积核进行卷积运算,避免单一尺度卷积核对不同精细度特征的忽略,增强网络对特征的表达能力,实现对时域信号特征精细化分布式表征;最后,在特征输出层后添加Softmax多分类器,利用反向传播逐层微调结构参数建立特征空间到松动状态空间的映射,输出风机基础螺栓松动检测结果。所提方法将松动特征自动学习与松动识别融为一体,实现了风机基础螺栓松动智能检测。通过在稳定转速和变转速下对风机基础螺栓松动检测试验,证明了所提方法的可行性和有效性。 展开更多
关键词 风机基础螺栓 松动状态 智能检测 多尺度一维卷积神经网络 精细化表征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部