期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
改进头脑风暴算法在多AUV协同搜索动态目标中的应用 被引量:1
1
作者 高永琪 王鹏 马威强 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第6期203-209,共7页
针对搜索水中动态目标问题,提出一种基于改进头脑风暴优化(brain storm optimization,BSO)算法的多自主式水下航行器(autonomous underwater vehicle,AUV)协同搜索方法。该方法采用基于马尔可夫过程的运动预测目标存在概率,联合探测信... 针对搜索水中动态目标问题,提出一种基于改进头脑风暴优化(brain storm optimization,BSO)算法的多自主式水下航行器(autonomous underwater vehicle,AUV)协同搜索方法。该方法采用基于马尔可夫过程的运动预测目标存在概率,联合探测信息与预测信息更新目标存在概率。AUV间共享目标存在概率、环境不确定度、协调信息素等信息,各自利用滚动优化策略规划搜索路径。对该方法进行了有效性和鲁棒性的仿真验证。仿真结果表明,该方法能搜索到不同运动模式的水中动态目标,搜索效果优于随机算法、遍历算法等传统算法和BSO智能算法,且对AUV的不同初始出发位置不敏感,提高了战术使用的灵活性。 展开更多
关键词 自主式水下航行器 动态目标 改进头脑风暴算法 协同搜索
在线阅读 下载PDF
“雨燕”中风暴算法在北京奥运天气预报示范项目中的应用及改进 被引量:16
2
作者 胡胜 汪瑛 +1 位作者 陈荣 何如意 《高原气象》 CSCD 北大核心 2009年第6期1434-1442,共9页
介绍了临近预报系统"雨燕"中的风暴系列算法,包括风暴识别、风暴追踪、基于TREC技术的风暴位置预报,以及预报位置实时评分算法等。利用2008年北京奥运期间出现的多个强对流天气,统计出该风暴产品在30 min和60 min预报时效的... 介绍了临近预报系统"雨燕"中的风暴系列算法,包括风暴识别、风暴追踪、基于TREC技术的风暴位置预报,以及预报位置实时评分算法等。利用2008年北京奥运期间出现的多个强对流天气,统计出该风暴产品在30 min和60 min预报时效的绝对距离误差分别约为13 km和23 km。分析了北京奥运天气预报示范项目期间该风暴产品误差较大的原因,主要集中于TREC技术本身及其适用范围,以及风暴预报方案中处理细节的不足,具体为TREC技术不适用于孤立的回波单体,雷达探测边界对TREC技术的影响,TREC矢量有时呈现出一定的空间不连续性,以及对孤立少动单体的不当处理等。针对上述原因,提出了一系列的改进方案,包括对用于风暴位置预报的TREC矢量增加一致性检验,利用风暴的历史轨迹校正不恰当的TREC矢量;对TREC技术中象素阵列大小进行统计分析,选择最适合北京地区的阵列大小;风暴预报位置超出回波范围时新的处理技巧等。利用北京奥运期间的强对流资料,对改进后的风暴算法进行评估。结果表明,一方面,改进后的算法能较好地控制风暴预报位置的绝对误差,在30 min和60 min预报时效,绝对误差分别减小了25%和26%。另一方面,由于预报位置精度的提高,能够提升相邻时刻风暴匹配的效率,使得与以前算法相比有更多的风暴样本参与了各个预报时效的评分。 展开更多
关键词 风暴算法 评分 平均绝对误差
在线阅读 下载PDF
基于头脑风暴算法的FastSLAM 2.0算法 被引量:1
3
作者 朱代先 王明博 +1 位作者 刘树林 郭苹 《计算机应用研究》 CSCD 北大核心 2021年第12期3629-3633,共5页
针对FastSLAM 2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM 2.0算法。通过头脑风暴算法替换FastSLAM 2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法... 针对FastSLAM 2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM 2.0算法。通过头脑风暴算法替换FastSLAM 2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法中个体评判的适度值,根据适度值大小差异完成K-means聚类操作;其次对聚类后的集合进行变异操作,并取消头脑风暴算法中个体选择操作,从而实现改进头脑风暴算法替代FastSLAM 2.0算法重采样过程,缓解粒子的贫化现象,增加粒子多样性,最终实现对机器人定位建图精度的提升。在机器人定位建图实验中,对比经典FastSLAM 2.0算法和基于遗传算法改进FastSLAM 2.0算法,提出的算法定位精度最高,相较于经典FastSLAM 2.0算法,提出算法定位精度提升了63%,稳定性提升了55%。 展开更多
关键词 机器人 同时定位与建图 FastSLAM 2.0 头脑风暴算法 粒子权值退化 粒子贫化 重采样
在线阅读 下载PDF
头脑风暴算法优化的乳腺MR图像软子空间聚类算法 被引量:1
4
作者 范虹 史肖敏 姚若侠 《计算机科学与探索》 CSCD 北大核心 2020年第8期1348-1357,共10页
传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首... 传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首先引入一个放松界约束与广义噪声聚类结合的目标函数,并用隶属度计算方法来寻找簇类所在子空间;然后在子空间聚类时用给定指数来适配聚类任务;最后在聚类过程中运用头脑风暴算法进行优化,有效地平衡局部搜索与全局搜索,从而弥补现有算法易陷入局部最优的不足。对比算法与该算法在Berkeley图像数据集上的实验结果表明该算法具有较高的精度,临床乳腺MR图像聚类的实验结果验证了所提算法的鲁棒性。 展开更多
关键词 乳腺MR图像 头脑风暴算法 软子空间聚类算法 图像聚类
在线阅读 下载PDF
基于头脑风暴算法的多处理机组合生产批量调度问题 被引量:5
5
作者 王全武 徐震浩 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期685-695,共11页
在生产调度领域中,受生产工艺等诸多因素的影响,往往每个生产过程都需要多台机器同时参与加工。同时,待加工的工件数量较多,需要将每种类型的工件进行批量处理,以缩短生产周期。本文在作业车间环境下,根据每个加工过程所参与机器的负荷... 在生产调度领域中,受生产工艺等诸多因素的影响,往往每个生产过程都需要多台机器同时参与加工。同时,待加工的工件数量较多,需要将每种类型的工件进行批量处理,以缩短生产周期。本文在作业车间环境下,根据每个加工过程所参与机器的负荷,采用可变分批方案,提出了非混排多处理机组合生产批量调度模型,并结合头脑风暴优化算法,求解出最短加工时间。提出了一种改进的头脑风暴优化算法,引入贪婪思想与动态讨论机制,讨论次数随着算法的迭代而自适应变化,将全局搜索与局部搜索相结合,加强了算法的搜索能力。实验结果表明,改进的头脑风暴优化算法与基本的头脑风暴优化算法相比,求解效率更高,收敛速度更快。 展开更多
关键词 多处理机组合生产 作业车间 批量调度 头脑风暴优化算法(BSO) 讨论机制
在线阅读 下载PDF
融合独立思维与局部逃逸的头脑风暴优化算法
6
作者 贾鹤鸣 饶洪华 +3 位作者 吴迪 薛博文 文昌盛 李永超 《计算机科学与探索》 北大核心 2025年第6期1522-1539,共18页
头脑风暴优化算法(BSO)是一种模拟人脑思维活动所提出的群智能优化算法。针对传统头脑风暴优化算法精度较差、寻优能力弱、易陷入局部最优等问题,提出了融合独立思维与局部逃逸的头脑风暴优化算法(IBSO)。提出了一种独立思维策略,当算... 头脑风暴优化算法(BSO)是一种模拟人脑思维活动所提出的群智能优化算法。针对传统头脑风暴优化算法精度较差、寻优能力弱、易陷入局部最优等问题,提出了融合独立思维与局部逃逸的头脑风暴优化算法(IBSO)。提出了一种独立思维策略,当算法陷入局部最优解停滞时,加入了一个阈值用于判断是否需要执行独立思维策略。当算法陷入局部最优导致无法获得更优解时,算法会通过独立思维策略寻找一个新的位置,协助算法寻求更优解以跳出局部最优。采用了局部逃逸策略(LEO),加强了算法全局探索能力,使得算法的搜索效率更强。通过CEC2014基准测试函数和CEC2020基准测试函数来测试IBSO算法的优化性能,并与8种优化算法进行对比实验。结果表明,所改进的算法寻优能力更强,具有更高的稳定性和全局搜索能力。采用最新的工程问题评价指标对三杆桁架设计和拉伸/压缩弹簧设计两种工程问题进行测试实验,进一步验证了IBSO算法在工程问题中的实用性。 展开更多
关键词 头脑风暴优化算法 局部逃逸策略 基准测试函数 工程问题
在线阅读 下载PDF
融合改进头脑风暴与Powell算法的马铃薯多模态图像配准 被引量:1
7
作者 李易达 王雨欣 +4 位作者 李晨曦 赵冀 马恢 张漫 李寒 《农业工程学报》 EI CAS CSCD 北大核心 2024年第19期146-158,共13页
基于热成像仪获取作物冠层温度可以实现作物水分胁迫状态的非接触式、无损检测,并且具有高通量检测的潜力。然而热红外图像存在作物边缘分布不清晰、噪声强、缺乏形状、纹理信息等问题,无法实现作物冠层温度自动化提取,利用可见光与热... 基于热成像仪获取作物冠层温度可以实现作物水分胁迫状态的非接触式、无损检测,并且具有高通量检测的潜力。然而热红外图像存在作物边缘分布不清晰、噪声强、缺乏形状、纹理信息等问题,无法实现作物冠层温度自动化提取,利用可见光与热红外图像间的信息互补性,通过图像自动配准技术可以弥补热红外图像缺点,为自动化检测提供基础。为解决可见光图像与热红外图像之间辐射、形状和纹理差异,导致不同模态图像配准难度较大问题,该研究提出了一种融合改进头脑风暴(brain storm optimization algorithm,BSO)与Powell算法的可见光与热红外图像配准方法。研究通过对原始BSO优化算法进行改进使得整体算法更好寻找到最优仿射变换矩阵进而完成图像配准任务,具体改进包含以下5个方面:使用混沌映射函数初始化BSO群体分布、修改新个体变异范围、手肘法动态调整BSO中K-means聚类数、在个体变异方式策略中加入混沌本地搜索方法、在算法执行过程中根据BSO算法前期后期不同特性动态调整概率参数。研究选用互信息值(mutual information,MI)、归一化互信息值(normalized mutual information,NMI)、均方根误差(root mean square error,RMSE)和平均结构相似性指数(mean structure similarity index measure,MSSIM)作为评价指标。该研究算法相对比Powell优化算法、遗传算法(genetic algorithm,GA)和BSO_Powell算法在温室数据中MI指标分别提升0.054 2、0.076 9、0.040 5,NMI指标分别提升0.015 9、0.023 1、0.052 7,RMSE指标分别降低15.02、13.03、27.08,MSSIM指标分别提升0.052 3、0.048 8、0.122 4;大田数据中MI指标分别提升0.064 2、0.066 7、0.035 5,NMI指标分别提升0.007 7、0.012 5、0.012 4,RMSE指标分别降低14.06、10.57、15.40,MSSIM指标分别提升0.047 1、0.038 1、0.042 9。结果表明,所提出算法具有很强的鲁棒性,能够准确完成复杂环境下马铃薯多模态图像配准任务。 展开更多
关键词 图像配准 头脑风暴算法 POWELL算法 互信息 马铃薯
在线阅读 下载PDF
考虑新鲜度的生鲜冷链物流同时取送货车辆路径及求解算法
8
作者 马佳 李楚连 李桐言 《包装工程》 北大核心 2025年第13期269-279,共11页
目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间... 目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。 展开更多
关键词 车辆路径问题 同时取送货 头脑风暴算法 冷链物流
在线阅读 下载PDF
基于分区搜索和强化学习的多模态多目标头脑风暴优化算法 被引量:1
9
作者 李鑫 余墨多 +1 位作者 姜庆超 范勤勤 《计算机应用研究》 CSCD 北大核心 2024年第8期2374-2383,共10页
维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索... 维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索难度和维持种群多样性;然后,使用SARSA(state-action-reward-state-action)算法来平衡头脑风暴算法的全局探索和局部开发能力;并使用特殊拥挤距离来挑选个体来指导种群进化。为了验证所提算法的性能,选取六种先进的多模态多目标优化算法来进行比较,并选取IEEE CEC2019多模态多目标问题基准测试集来对所有比较算法的性能进行测试。实验结果表明,MMBSO-ZSRL的整体性能要显著优于其他六种比较算法。MMBSO-ZSRL不仅可以找到多样性和逼近性更好的帕累托前沿,而且可以在决策空间找到更多的帕累托最优解。 展开更多
关键词 多模态多目标优化 头脑风暴优化算法 强化学习 SARSA算法 分区搜索
在线阅读 下载PDF
目标空间聚类的差分头脑风暴优化算法 被引量:7
10
作者 吴亚丽 付玉龙 +1 位作者 王鑫睿 刘庆 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br... 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. 展开更多
关键词 头脑风暴算法 聚类 差分变异 目标空间
在线阅读 下载PDF
基于头脑风暴优化算法的BP神经网络模糊图像复原 被引量:18
11
作者 梁晓萍 郭振军 朱昌洪 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2980-2986,共7页
该文提出一种基于头脑风暴智能优化算法的BP神经网络模糊图像复原方法(OBSO-BP)。该方法在聚类和变异两方面优化了头脑风暴智能算法,利用头脑风暴优化算法易于解决多峰高维函数问题的特点,自动搜寻BP神经网络更佳的初始权值和阈值,以减... 该文提出一种基于头脑风暴智能优化算法的BP神经网络模糊图像复原方法(OBSO-BP)。该方法在聚类和变异两方面优化了头脑风暴智能算法,利用头脑风暴优化算法易于解决多峰高维函数问题的特点,自动搜寻BP神经网络更佳的初始权值和阈值,以减少BP网络对其初始权值和阈值的敏感性,避免网络陷入局部最优解,增加网络的收敛速度,减小网络误差,提高图像还原质量。该文采用20张不同的图像,对其模糊图像分别进行维纳滤波复原(Wiener)、基于头脑风暴算法的维纳滤波复原(Wiener-BSO)、BP神经网络复原以及基于头脑风暴算法的BP神经网络(BSO-BP)图像复原实验。实验结果表明,该方法能够取得更好的图像复原效果。 展开更多
关键词 图像复原 BP神经网络 头脑风暴算法
在线阅读 下载PDF
基于讨论机制的头脑风暴优化算法 被引量:27
12
作者 杨玉婷 史玉回 夏顺仁 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第10期1705-1711,1746,共8页
为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通... 为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通过线性递减和线性递增方式调整组间讨论和组内讨论次数,使算法搜索初期加强全局搜索能力,搜索后期加强局部细致搜索能力,有效地防止早熟问题.对6个经典测试函数(BFs)的10维、20维、30维问题分别进行测试来评估DMBSO的效果.结果表明,DMBSO算法与BSO算法和经典的粒子群(PSO)算法相比,可以有效地避免陷入局部最优,稳定地找到更好的最优值,而且随着问题维度的增加,DMBSO表现出更强的鲁棒性. 展开更多
关键词 群体智能优化算法 头脑风暴优化算法 讨论机制
在线阅读 下载PDF
基于头脑风暴优化算法的多机器人气味源定位 被引量:11
13
作者 梁志刚 顾军华 董永峰 《计算机应用》 CSCD 北大核心 2017年第12期3614-3619,共6页
针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位... 针对现有室内湍流环境下多机器人气味源搜索算法存在历史浓度信息利用率不高、缺少调节全局与局部搜索的机制等问题,提出头脑风暴优化(BSO)算法与逆风搜索结合的多机器人协同搜索算法。首先,将机器人已搜索位置初始化为个体,以机器人位置为中心聚类,有效利用了历史信息的指引作用;然后,将逆风搜索作为个体变异操作,动态调节选中一个类中个体或两个类中个体融合生成新个体的数量,有效调节了全局和局部搜索方式;最后,根据浓度和持久性两个指标对气味源进行确认。在有障碍和无障碍两个环境中将所提算法与三种群体智能多机器人气味源定位算法进行定位对比仿真实验,实验结果表明,所提算法的平均搜索时间减少33%以上,且定位准确率达到100%。该算法能够有效调节机器人全局和局部搜索关系,快速准确定位气味源。 展开更多
关键词 气味源定位 湍流环境 多机器人 头脑风暴优化算法 逆风搜索
在线阅读 下载PDF
高维多目标头脑风暴优化算法 被引量:6
14
作者 吴亚丽 付玉龙 +1 位作者 李国婷 张亚崇 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第1期193-204,共12页
多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,... 多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,通过对决策变量进行分析,围绕收敛性和多样性分别进行优化,在对收敛性优化时通过分解策略增加选择压力,而在对多样性优化时以参考点更新种群增加多样性,最终扩展并提出了高维多目标头脑风暴优化算法.此外,本文提出一种以角点为聚类中心的自适应聚类方式,明确个体的导向,提高种群的扩展性.与现有的几种效果较好的多目标进化算法进行比较,大量的仿真结果表明了本文的算法具有优秀的性能. 展开更多
关键词 头脑风暴优化算法 聚类 决策变量聚类 分解策略 参考点
在线阅读 下载PDF
改进头脑风暴优化算法与Powell算法结合的医学图像配准 被引量:9
15
作者 梁志刚 顾军华 《计算机应用》 CSCD 北大核心 2018年第9期2683-2688,共6页
针对现有医学图像配准算法精度较差、易陷入局部极值和收敛速度慢的问题,结合多分辨率分析,提出改进头脑风暴优化(MBSO)算法与Powell算法结合的图像配准算法。MBSO算法通过改变个体生成方式调节参与局部和全局搜索的个体比例,应用可变... 针对现有医学图像配准算法精度较差、易陷入局部极值和收敛速度慢的问题,结合多分辨率分析,提出改进头脑风暴优化(MBSO)算法与Powell算法结合的图像配准算法。MBSO算法通过改变个体生成方式调节参与局部和全局搜索的个体比例,应用可变步长加强搜索能力,达到跳出局部最优和加速收敛的目的。首先,在低分辨率层利用MBSO算法进行全局搜索;然后,将搜索结果作为Powell算法的初始点在高分辨率层进一步搜索;最后,在原始图像层利用Powell算法搜索并定位全局最优值。与粒子群优化(PSO)算法、蚁群优化(ACO)算法、遗传算法(GA)与Powell算法结合算法相比,所提算法平均均方根误差分别减小了20.89%、30.46%和18.54%,平均配准时间分别缩短了17.86%、27.05%和26.60%,并且达到了100%的成功率。实验结果表明,所提算法具有很强的鲁棒性,能够快速、准确完成医学图像配准任务。 展开更多
关键词 医学图像配准 头脑风暴优化算法 POWELL算法 归一化互信息 多分辨率
在线阅读 下载PDF
基于Spark的并行化头脑风暴优化算法及复杂多峰函数优化 被引量:1
16
作者 杨广明 张涛 +2 位作者 TRUONG Thanh-tung 王瑞 马连博 《计算机工程与科学》 CSCD 北大核心 2019年第3期393-399,共7页
头脑风暴优化BSO算法是一种新型的群体智能优化算法,启发于众人集思广益求解问题的模式,适合求解复杂多峰函数优化问题。但是,BSO求解多峰极值时需进行重复的迭代运算,面对大规模数据集时会出现计算效率与求解精度过低的现象。为解决上... 头脑风暴优化BSO算法是一种新型的群体智能优化算法,启发于众人集思广益求解问题的模式,适合求解复杂多峰函数优化问题。但是,BSO求解多峰极值时需进行重复的迭代运算,面对大规模数据集时会出现计算效率与求解精度过低的现象。为解决上述问题,设计并实现了一种基于Spark的并行化头脑风暴优化算法,通过将BSO算法中计算复杂度最高的聚类与新解产生过程并行化,以提高算法的加速比与计算效率。特别地,基于并行化思想,将种群划分为多个子群进行协同演化,每个子群独立产生新解来保持种群多样性,提高算法的收敛速度。最后,利用并行化BSO算法求解多峰函数。实验表明,在并行节点的总核心数为10的情况下,并行化BSO算法计算时间节省一半,计算精度和串行BSO算法基本持平,收敛速度明显提高,实验结果说明了并行化BSO的有效性。 展开更多
关键词 头脑风暴优化算法 SPARK 多峰函数 群体智能
在线阅读 下载PDF
基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究 被引量:12
17
作者 李海涛 邵泽东 《应用海洋学学报》 CSCD 北大核心 2020年第1期57-62,共6页
针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP)。该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思... 针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP)。该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思维解决问题的过程,具有强大的全局搜索和局部搜索的能力,同时利用BP神经网络所具有良好的非线性映射能力、学习适应能力和容错性,最大程度上考虑到海洋水质评价因素的非线性和非平稳的关系,得到BP神经网络的各层权值、阈值的最优解,使得海水水质评价结果准确合理。并以胶州湾海域的12个监测站位的监测数据作为评价样本进行水质评价,实验结果表明该评价模型能够克服局部极小问题,评价结果准确性较高,并具有一定的实用性。 展开更多
关键词 海洋环境科学 头脑风暴优化算法 BP神经网络 海水水质评价
在线阅读 下载PDF
群体智能算法在路面参数反分析中的适用性及优选策略 被引量:4
18
作者 杨森顺 邓尚瑛 +1 位作者 范海山 张军辉 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第5期191-203,共13页
随着群体智能算法在路面参数反演中的成功应用,复杂多元非线性优化难题得以解决,但算法的选择仍然是路面参数反分析问题中亟待解决的难题。针对路面参数反分析中模型复杂、反演参数众多、绝大多数运算时间消耗在正算程序上等问题,选择8... 随着群体智能算法在路面参数反演中的成功应用,复杂多元非线性优化难题得以解决,但算法的选择仍然是路面参数反分析问题中亟待解决的难题。针对路面参数反分析中模型复杂、反演参数众多、绝大多数运算时间消耗在正算程序上等问题,选择8种常见的群体智能算法,开展限定正算调用次数下算法性能相关研究,并以考虑材料横观各向同性以及层间接触状态的路面结构参数反演问题为例,对群体智能算法进行实际测试。结果表明:不同算法各具特点,其中,粒子群算法、遗传算法、头脑风暴算法、人工蜂群算法以及烟花算法在多峰问题上具有较好的适用性;萤火虫算法在解决最优解附近存在平缓区域的问题时具有较快的收敛速度;对于遗传算法,实数编码方式后期收敛速度较二进制编码方式有所提高,但对于多峰问题的搜索能力有所下降;鱼群算法、混合蛙跳算法仅有在较大正算调用次数下才有较好的寻优能力。对于路面参数反演问题,从弯沉曲线匹配上看,粒子群算法、遗传算法、头脑风暴算法以及萤火虫算法均有较好的反演结果;而从相关系数上看,头脑风暴算法具有最佳反演结果。 展开更多
关键词 路基路面 参数反演 群体智能算法 头脑风暴算法 遗传算法 粒子群算法
在线阅读 下载PDF
基于全局最优和差分变异的头脑风暴优化算法 被引量:7
19
作者 马威强 高永琪 赵苗 《系统工程与电子技术》 EI CSCD 北大核心 2022年第1期270-278,共9页
针对头脑风暴优化(brain storm optimization, BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题,采用追随全局最优策略以充分利用全局最优信息,并用差分变异代替原来的高斯变异以自适应调节变异步长,... 针对头脑风暴优化(brain storm optimization, BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题,采用追随全局最优策略以充分利用全局最优信息,并用差分变异代替原来的高斯变异以自适应调节变异步长,提出了基于全局最优和差分变异的BSO(global-best difference-mutation brain storm optimization, GDBSO)算法。通过6个标准测试函数极值寻优的Matlab仿真对比研究表明GDBSO具有优良性能,较好地解决了原BSO搜索效率低的问题,提高了算法的寻优精度和收敛速度。GDBSO结合自主式水下航行器(autonomous underwater vehicle, AUV)路径规划应用的仿真验证了算法的有效性和可行性。 展开更多
关键词 全局最优 差分变异 头脑风暴优化算法 自主式水下航行器 路径规划
在线阅读 下载PDF
多分支混沌变异的头脑风暴优化算法 被引量:4
20
作者 衣俊艳 施晓东 杨刚 《计算机工程与应用》 CSCD 北大核心 2022年第16期129-138,共10页
头脑风暴优化算法是一种受人类群体行为启发的新型群智能优化算法。该算法通过模拟人类使用头脑风暴创造性解决问题的行为,在解空间中分析个体分布,并使用变异生成新个体,多次迭代求得最优解,具有较高的鲁棒性和自适应能力。针对头脑风... 头脑风暴优化算法是一种受人类群体行为启发的新型群智能优化算法。该算法通过模拟人类使用头脑风暴创造性解决问题的行为,在解空间中分析个体分布,并使用变异生成新个体,多次迭代求得最优解,具有较高的鲁棒性和自适应能力。针对头脑风暴优化算法精度较差、易陷入局部最优导致早熟收敛的缺陷,提出了一种多分支混沌变异的头脑风暴优化算法。该算法选取8种混沌映射,设计了一种多分支混沌变异算子。当原始算法陷入局部最优时,使用多分支混沌变异生成新个体,利用多种混沌运动的遍历性、随机性和多样性,扩大了混沌空间的范围,增强了算法全局搜索的能力。对10个经典测试函数的10、20、30维问题进行测试,并与原始头脑风暴优化算法、粒子群优化算法、遗传算法和布谷鸟搜索算法进行对比,实验结果表明,所提出的算法可以有效避免陷入局部最优,具有更高的稳定性和全局搜索能力。 展开更多
关键词 混沌 头脑风暴优化算法 多分支混沌变异 群智能优化算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部