目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间...目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。展开更多
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br...作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性.展开更多
文摘目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。
文摘作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性.