期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
面向多时间步风功率预测的深度时空网络模型
1
作者 胡健鹏 张立臣 《计算机应用》 北大核心 2025年第1期98-105,共8页
准确的风功率预测能为风电能源行业提供可靠的指导和决策依据,然而传统的建模方法主要是将风功率预测问题转换为时序预测问题,忽略了机组间的空间信息,因此,提出一种面向多时间步风功率预测的深度时空网络模型。该模型采用编码器-解码... 准确的风功率预测能为风电能源行业提供可靠的指导和决策依据,然而传统的建模方法主要是将风功率预测问题转换为时序预测问题,忽略了机组间的空间信息,因此,提出一种面向多时间步风功率预测的深度时空网络模型。该模型采用编码器-解码器架构设计,首先,编码器根据历史功率信息建图,并使用图注意力网络(GAT)提取融合风场空间信息的机组特征;其次,使用门控循环单元(GRU)提取输入数据中的时间特性,从而得到关于该机组的风能时间特征;最后,在解码器融合编码器输出的时空特征后,使用样本卷积和交互网络(SCINet)融合不同时间尺度分辨率下的时空特征,输出未来多时间步风功率的预测值。在WindFarm1数据集上的实验结果表明,在预测步数为72时,所提模型的绝对平均误差(MAE)低至42.38,相较于双向门控循环单元(Bi-GRU)的MAE下降了4.25%;所提模型的均方根误差(RMSE)低至42.71,相较于Autoformer的RMSE下降了8.70%。而在WindFarm2数据集上的泛化性实验结果表明,所提模型在不同风场中具备适用性,为未来风功率的准确预测提供了一种新的途径。 展开更多
关键词 风功率预测 时空网络 图注意力网络 样本卷积和交互网络 门控循环单元 时间序列
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:1
2
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
3
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:9
4
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型 被引量:2
5
作者 荆志宇 李培强 林文婷 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期39-47,59,共10页
针对现有风功率时序预测模型数据端缺少参数优化以及模型端缺少结构优化的问题,提出一种双端优化时序式风功率预测模型。首先,利用贝叶斯优化对数据端参数进行高效搜索寻优;然后,利用通道注意力和卷积神经网络构建特征提取模块,增强模... 针对现有风功率时序预测模型数据端缺少参数优化以及模型端缺少结构优化的问题,提出一种双端优化时序式风功率预测模型。首先,利用贝叶斯优化对数据端参数进行高效搜索寻优;然后,利用通道注意力和卷积神经网络构建特征提取模块,增强模型对输入影响因素重要性的学习;最后,利用双向长短期记忆模型对先前提取的特征进行精准拟合。研究结果表明,所提出模型在各预测场景下均能很好地把握风功率变化趋势,显著提升了预测精度。 展开更多
关键词 时序式风功率预测 双端优化 贝叶斯优化 通道注意力
在线阅读 下载PDF
基于SGMD-SE与优化TCN-BiLSTM/BiGRU的超短期风功率预测 被引量:3
6
作者 宋江涛 崔双喜 +1 位作者 樊小朝 孙玉峰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期588-596,共9页
为提高超短期风功率预测精度,提出一种基于SGMD-SE与优化的TCN-BiLSTM/BiGRU组合预测模型。首先,采用最大互信息系数(MIC)选取出风功率强相关变量,作为预测模型的输入特征。其次,利用能抑制模态混叠、无须设置分解参数的辛几何模态分解(... 为提高超短期风功率预测精度,提出一种基于SGMD-SE与优化的TCN-BiLSTM/BiGRU组合预测模型。首先,采用最大互信息系数(MIC)选取出风功率强相关变量,作为预测模型的输入特征。其次,利用能抑制模态混叠、无须设置分解参数的辛几何模态分解(SGMD),将原始风功率信号分解成若干个较平稳的初始辛几何分量(SGC)。然后,使用样本熵(SE)完成初始分量重构并将重构后分量划分为复杂度高、低两类,根据两类分量不同特点,分别搭建TCN-BiLSTM模型、TCN-BiGRU模型进行预测。为改善BiLSTM、BiGRU预测性能,采用时间卷积网络(TCN)提取两类分量特征,并提出一种基于Tent混沌映射和柯西变异的改进鱼鹰优化算法(IOOA)优化其关键参量。最后,叠加各分量预测值得到最终的预测结果。结果表明:所提出的组合预测模型可有效提升超短期风功率预测的准确率,具有较强的实用价值。 展开更多
关键词 风功率预测 分解 长短期记忆网络 时间卷积网络 鱼鹰优化算法
在线阅读 下载PDF
考虑增强特征选择的深度卷积-时序网络短期风功率预测 被引量:2
7
作者 付炳喆 王玮 +2 位作者 任国瑞 杨健 李沂洹 《动力工程学报》 CAS CSCD 北大核心 2024年第10期1565-1573,共9页
准确的风电功率预测对电网安全与风资源合理利用具有重要意义。为提高风电功率预测精度,提出一种涵盖异常值检测、增强特征选择和超参数调整等多个环节的风电功率预测策略。首先,采用孤立森林算法筛除风电数据的异常值和冗余值;其次,引... 准确的风电功率预测对电网安全与风资源合理利用具有重要意义。为提高风电功率预测精度,提出一种涵盖异常值检测、增强特征选择和超参数调整等多个环节的风电功率预测策略。首先,采用孤立森林算法筛除风电数据的异常值和冗余值;其次,引入最大互信息系数(MIC)作为特征选择评价指标,获得高相关度的输入特征;此外,建立了优化的卷积神经网络(CNN)与门控循环单元(GRU)神经网络组合模型,其中CNN层将MIC对特征重要性的理解进一步增强,并以多层GRU层对风功率时序关系建模。实际算例表明:所提出的优化神经网络模型较文中其他预测模型,预测指标误差更小,决定系数R 2平均提高了4.44%,平均绝对误差M AE、均方根误差R MSE分别平均降低了62.02%和61.51%,具有较高的预测精度。 展开更多
关键词 功率预测 增强特征选择 深度神经网络 北方苍鹰优化算法
在线阅读 下载PDF
结合风功率预测及储能能量状态的模糊控制策略平滑风电出力 被引量:38
8
作者 刘颖明 王维 +1 位作者 王晓东 彭朝阳 《电网技术》 EI CSCD 北大核心 2019年第7期2535-2543,共9页
在风电并网处加入储能系统,可以有效地平滑风力发电系统的并网功率,满足电网规定的波动范围。而基于储能荷电能量反馈的储能控制策略,可以在保证并网功率要求的同时,尽量避免储能电池过度充/放。在此基础上,提出一种基于相空间重构–随... 在风电并网处加入储能系统,可以有效地平滑风力发电系统的并网功率,满足电网规定的波动范围。而基于储能荷电能量反馈的储能控制策略,可以在保证并网功率要求的同时,尽量避免储能电池过度充/放。在此基础上,提出一种基于相空间重构–随机森林风功率预测模型和储能荷电能量反馈的模糊控制策略。基于预测未来风功率变化评估功率波动水平,并结合储能当前荷电状态,利用模糊控制器调节储能系统出力。在保证风电平滑前提下,减少储能电池进入平抑能力死区时间,维持储能系统平抑波动水平。最后,通过将仿真算例结果和传统方法对比,验证了所提控制策略的优越性,即可以在相同储能配置比例下达到更低的功率波动指标要求和更少的储能死区时间。 展开更多
关键词 功率波动 风功率预测 模糊控制 相空间重构 随机森林 能量状态
在线阅读 下载PDF
基于改进AdaBoost.RT和KELM的风功率预测方法研究 被引量:35
9
作者 胡梦月 胡志坚 +1 位作者 仉梦林 傅晨宇 《电网技术》 EI CSCD 北大核心 2017年第2期536-542,共7页
为了提高风功率预测精度及预测模型的泛化能力,提出基于改进Ada Boost.RT算法的风功率预测方法,可以有效提高弱学习算法的性能。首先建立核极限学习机(kernel extreme learning machine,KELM)模型,并用改进蝙蝠算法对其参数进行优化,通... 为了提高风功率预测精度及预测模型的泛化能力,提出基于改进Ada Boost.RT算法的风功率预测方法,可以有效提高弱学习算法的性能。首先建立核极限学习机(kernel extreme learning machine,KELM)模型,并用改进蝙蝠算法对其参数进行优化,通过引入局部搜索和莱维飞行使算法具有更好的搜索能力和跳出局部最优的能力。在此基础上进一步通过Ada Boost.RT算法生成多个KELM个体(即基学习器),在训练过程中不断调整每个基学习器的权重及训练集中每个样本的权重。最后用训练好的基学习器来对测试样本进行预测,并集成得到最终结果。从不同时间尺度应用不同月份的风电场数据进行仿真测试,同时与前馈(back propagation,BP)神经网络、支持向量机、极限学习机等预测模型对比,仿真结果表明所提方法具有较好的预测精度及泛化性能。 展开更多
关键词 风功率预测 基学习器 AdaBoost.RT 核极限学习机 蝙蝠算法
在线阅读 下载PDF
基于卷积长短期记忆神经网络的短期风功率预测 被引量:42
10
作者 栗然 马涛 +3 位作者 张潇 回旭 刘英培 尹晓钢 《太阳能学报》 EI CAS CSCD 北大核心 2021年第6期304-311,共8页
提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后... 提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后将处理过的气象数据和历史风功率数据通过卷积网络实现对数据的特征提取和进一步的数据降维,再通过长短期记忆网络实现对数据的拟合,并在神经网络的训练过程中引入DropConnect技术减小模型中的过拟合现象,最终实现风功率的精确预测。以中国西北某风电场的实测数据进行验证,结果表明所提方法能有效对风功率进行预测,较BP神经网络和支持向量机(SVM)有更高的预测精度。 展开更多
关键词 风功率预测 主成分分析 长短期记忆 卷积神经网络 DropConnect技术
在线阅读 下载PDF
基于混核LSSVM的批特征风功率预测方法 被引量:10
11
作者 刘畅 郎劲 《自动化学报》 EI CSCD 北大核心 2020年第6期1264-1273,共10页
针对风电场风功率预测问题,利用历史风功率、气象数据和测风塔实时数据等相关信息,提出了带有批特征的混核最小二乘支持向量机(Hybrid kernel least squares support vector machine,HKLSSVM)方法,建立风电场风功率预测模型.为了增强模... 针对风电场风功率预测问题,利用历史风功率、气象数据和测风塔实时数据等相关信息,提出了带有批特征的混核最小二乘支持向量机(Hybrid kernel least squares support vector machine,HKLSSVM)方法,建立风电场风功率预测模型.为了增强模型的适应性,设计改进的差分进化算法对模型参数进行优化,并利用稀疏选择方法来选取合适的训练样本集,缩短建模时间,保证预测模型精度.根据风场风机的地理位置分布情况,提出批划分的建模策略,对相近地理位置的风机进行组批,替代传统风场风功率预测方法.通过风场中实际数据进行测试,实验结果表明与其他预测方法相比,本文提出的方法能够提高预测精度和效率,减少风电波动性对电网的影响,从而提高电网的安全性和可靠性. 展开更多
关键词 风功率预测 批特征 混核最小二乘支持向量机 差分进化 稀疏选择
在线阅读 下载PDF
基于风功率预测的风电场平滑控制电池容量的需求分析 被引量:4
12
作者 潘文霞 傅中兴 +1 位作者 王鹏飞 何海平 《太阳能学报》 EI CAS CSCD 北大核心 2013年第3期490-495,共6页
基于一典型风电场(2MW)的有功功率输出,采用指数平滑预测法实现了风电场的功率预测。建立以平滑控制为目的的电池储能系统控制策略,实现风电场有功功率平滑输出的仿真研究和电池容量需求分析。研究分析表明:结合风电场预测系统实现功率... 基于一典型风电场(2MW)的有功功率输出,采用指数平滑预测法实现了风电场的功率预测。建立以平滑控制为目的的电池储能系统控制策略,实现风电场有功功率平滑输出的仿真研究和电池容量需求分析。研究分析表明:结合风电场预测系统实现功率平滑输出,可大幅减少电池容量需求;预测周期越短,电池容量需求越小,并根据仿真结果,通过非线性拟合得到预测周期与电池容量需求的关系。为了降低电池容量,最后提出一种确定配置电池容量的优化方法,并通过仿真证明了该计算方法的可行性和有效性。 展开更多
关键词 力发电 风功率预测 电池容量 功率平滑 电池储能系统
在线阅读 下载PDF
用于短期风功率预测的历史数据深度迁移模型 被引量:6
13
作者 彭飞 贲驰 +3 位作者 马煜 吴奕 安丰强 陈志奎 《重庆大学学报》 CSCD 北大核心 2022年第1期95-102,共8页
随着全球化石燃料短缺日益严重,可再生能源的开发与利用愈发得到重视。风能是被广泛使用的清洁能源之一,在生产工作中,风力发电作为风能的主要利用形式,需要对其功率进行预测。依托风场日常记录的历史数据,传统学习模型可对风功率进行... 随着全球化石燃料短缺日益严重,可再生能源的开发与利用愈发得到重视。风能是被广泛使用的清洁能源之一,在生产工作中,风力发电作为风能的主要利用形式,需要对其功率进行预测。依托风场日常记录的历史数据,传统学习模型可对风功率进行短期预测,但往往仅使用自己域内的历史数据作为分析对象,该类算法导致结果片面,局限性大,不能有效使用类数据中的隐含联系,抑制原始数据缺失或异常值引起的模型性能下降问题。笔者设计一种基于历史数据深度迁移的短期风功率预测模型。首先,使用带降噪处理的自动编码机构建深度神经网络模型。其次,应用深度迁移方法共享隐藏层,挖掘特征之间的隐含联系。最后,从具有相似特征和地理位置的风场数据中迁移重要知识,提高模型准确率和可靠性。实验结果表明,研究方法较之未使用迁移的方法更充分利用现有数据,预测准确率显著提高。 展开更多
关键词 短期风功率预测 历史数据 深度迁移学习
在线阅读 下载PDF
基于Elman和实测风速功率数据的短期风功率预测 被引量:12
14
作者 王一珺 贾嵘 《高压电器》 CAS CSCD 北大核心 2017年第9期125-129,共5页
为提高风电场发电功率预测的精度,提出一种基于Elman神经网络和实测风速功率数据的短期风功率预测方法。根据风速和风电功率历史数据来拟合风电机的风速功率曲线;建立基于Elman神经网络的短期风功率预测模型,并利用遗传算法对网络参数... 为提高风电场发电功率预测的精度,提出一种基于Elman神经网络和实测风速功率数据的短期风功率预测方法。根据风速和风电功率历史数据来拟合风电机的风速功率曲线;建立基于Elman神经网络的短期风功率预测模型,并利用遗传算法对网络参数进行优化。最后,将文中预测模型应用到实测数据验证模型的有效性,结果表明了模型的先进性。 展开更多
关键词 ELMAN神经网络 短期风功率预测 功率曲线 遗传算法
在线阅读 下载PDF
基于ARMAX-GARCH模型的微电网风功率预测 被引量:5
15
作者 黄磊 舒杰 +1 位作者 崔琼 姜桂秀 《新能源进展》 2013年第3期224-229,共6页
目前风功率预测多为风功率期望的点预测,且以采样间隑较大的功率序列作为建模序列,这样会降低预测模型对风功率时序特征模拟的准确度和可信度。文中基于小采样间隑风功率序列,提出ARMAX-GARCH风功率预测模型。通过构造风功率新息序列,... 目前风功率预测多为风功率期望的点预测,且以采样间隑较大的功率序列作为建模序列,这样会降低预测模型对风功率时序特征模拟的准确度和可信度。文中基于小采样间隑风功率序列,提出ARMAX-GARCH风功率预测模型。通过构造风功率新息序列,结合小时平均风功率序列,建立ARMAX点预测模型,采用BIC最小信息准则和相关性分析实现模型定阶和外生变量选择;采用GARCH模型模拟残差的波动特性实现区间预测。以海岛微电网实测风功率数据为例,迚行提前1 h风功率预测。结果表明,与持续法、ARMA和RBF神经网络相比,该预测模型能显著提高风功率期望的点预测精度幵具有较好的区间预测效果。 展开更多
关键词 风功率预测 功率新息序列 ARMAX GARCH 区间预测
在线阅读 下载PDF
基于小波分解和ELMAN神经网络的风速—风功率预测研究 被引量:7
16
作者 汪小明 尹笋 +2 位作者 杨楠 严居斌 吴戎 《陕西电力》 2014年第9期11-14,共4页
针对风功率难以预测的问题,提出一种基于小波分解和ELMAN神经网络的风速-风功率预测模型,采用小波分解来降低风速的非平稳性;采用ELMAN神经网络建立风速预测模型;基于实测数据拟合功率曲线,并结合得到的功率曲线进行风功率预测。最后将... 针对风功率难以预测的问题,提出一种基于小波分解和ELMAN神经网络的风速-风功率预测模型,采用小波分解来降低风速的非平稳性;采用ELMAN神经网络建立风速预测模型;基于实测数据拟合功率曲线,并结合得到的功率曲线进行风功率预测。最后将建模流程应用到实测数据验证模型的有效性,结果表明了模型的先进性。 展开更多
关键词 风功率预测 小波分解 ELMAN神经网络
在线阅读 下载PDF
风功率预测中的场风速指标的应用 被引量:2
17
作者 吴息 许婷婷 +1 位作者 余江 王彬滨 《太阳能学报》 EI CAS CSCD 北大核心 2016年第2期310-315,共6页
利用2011年11~12月份的北方某大型风电场实测风速与输出功率资料,对比分析若干风电场风速指标与总输出功率的对应关系及其精确度,结果表明根据风力机风功率曲线定义的场有效风速立方和能更精确拟合风电场总输出功率;且针对BJ-RUC模... 利用2011年11~12月份的北方某大型风电场实测风速与输出功率资料,对比分析若干风电场风速指标与总输出功率的对应关系及其精确度,结果表明根据风力机风功率曲线定义的场有效风速立方和能更精确拟合风电场总输出功率;且针对BJ-RUC模式场有效风速立方和的0~24h时效预报值探索其统计修订方法,使其平均绝对误差下降约25.4%,风电场总输出功率预报的平均绝对误差下降约22%。 展开更多
关键词 风功率预测 数值预报 速指标 误差 修订
在线阅读 下载PDF
基于混合算法优化的短期风功率预测 被引量:6
18
作者 董朕 殷豪 孟安波 《智慧电力》 2017年第11期24-30,共7页
准确预测风电功率对风电规模化并网以及电网安全运行至关重要。针对短期风电功率预测,提出一种具有自适应噪声特性的完备集成经验模态分解和纵横交叉核极限学习机的混合预测模型。首先采用具有自适应噪声特性的完备集成经验模式将原始... 准确预测风电功率对风电规模化并网以及电网安全运行至关重要。针对短期风电功率预测,提出一种具有自适应噪声特性的完备集成经验模态分解和纵横交叉核极限学习机的混合预测模型。首先采用具有自适应噪声特性的完备集成经验模式将原始风电信号分解成多个固有模态分量;然后利用核极限学习机对各个模态分量进行预测,并采用纵横交叉算法对核极限学习机的惩罚参数和核参数进行优化,从而得到更好的预测结果,最后叠加全部分量的预测值作为最终的预测结果。以2个不同风电场实际采集的数据为算例,并引入不同方法进行对比,证实了该模型的优越性和鲁棒性。 展开更多
关键词 短期风功率预测 完备集成经验模态分解 纵横交叉算法 核极限学习机
在线阅读 下载PDF
基于数据分层预处理的短期风功率预测研究 被引量:3
19
作者 章伟 邓院昌 魏桢 《水电能源科学》 北大核心 2013年第11期245-248,共4页
良好的风速和风功率预测是解决风电并网问题的关键。针对样本数据中的无效点影响风功率建模问题,采用分层统计法对风功率进行统计分析后获得了风速—功率关系带,对功率进行修正,根据修正后的数据应用灰色—马尔可夫链模型进行预测,并与... 良好的风速和风功率预测是解决风电并网问题的关键。针对样本数据中的无效点影响风功率建模问题,采用分层统计法对风功率进行统计分析后获得了风速—功率关系带,对功率进行修正,根据修正后的数据应用灰色—马尔可夫链模型进行预测,并与比恩法和经验公式法进行对比分析。结果表明,风功率分层统计法可有效地消除坏点数据,预测精度高。 展开更多
关键词 数据分层 预处理 风功率预测 分层统计法 灰色-马尔可夫链模型
在线阅读 下载PDF
基于光滑自助法的风功率预测误差核密度建模方法 被引量:4
20
作者 杨宏 李文栋 赵振兵 《可再生能源》 CAS CSCD 北大核心 2021年第4期494-500,共7页
在风功率预测误差建模应用中,无偏交叉验证(UCV)和经验法则(ROT)是两种常用的非参数方法。然而,由于风功率预测误差中存在的尖峰厚尾,以及局部小样本特征,直接使用这两种方法会产生较大的泛化误差。为了使UCV和ROT在应用中发挥更好的作... 在风功率预测误差建模应用中,无偏交叉验证(UCV)和经验法则(ROT)是两种常用的非参数方法。然而,由于风功率预测误差中存在的尖峰厚尾,以及局部小样本特征,直接使用这两种方法会产生较大的泛化误差。为了使UCV和ROT在应用中发挥更好的作用,文章提出了一种基于光滑自助法的核密度估计方法。该方法利用了光滑自助法在分位数推断上的优势,通过修改平均积分平方误差(MISE)指标函数,实现了对基本估计方法的校正。该方法本质上是一种装袋方法,可以与任何基本的核密度方法结合使用。在实例仿真中,得到了SBUCV方法和SBROT方法的运行结果,并与UCV和ROT方法的结果进行了对比。仿真结果表明了该方法的有效性。 展开更多
关键词 风功率预测误差 核密度估计 光滑自助法 UCV ROT
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部