陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电...陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电全直流发电系统直流环节的盈余功率,分析常规LVRT策略在风电全直流系统中的适用性。考虑电网对风电系统储能配置的要求,兼顾风电机组自启动特性提出利用电池储能存储低电压故障下直流母线的盈余功率实现LVRT的控制策略。在PSCAD/EMTDC仿真平台搭建陆上风电全直流发电系统模型,对所提策略进行仿真验证。结果表明,所提控制策略能够提升风电全直流发电系统的LVRT能力,促进直流母线电压的快速恢复;电池储能在故障期间吸收盈余能量,在风电机组自启动期间提供能量,提高了能量与储能的利用率。展开更多
为有效提高风电场的并网运行能力,将电池储能系统(battery energy storage system,BESS)-静止同步补偿器(static compensator,STATCOM)串联集成单元与风力发电单元相结合,建立基于Park变换的BESS-STATCOM集成单元和基于异步发电机风力...为有效提高风电场的并网运行能力,将电池储能系统(battery energy storage system,BESS)-静止同步补偿器(static compensator,STATCOM)串联集成单元与风力发电单元相结合,建立基于Park变换的BESS-STATCOM集成单元和基于异步发电机风力发电系统的整体动态数学模型,通过理论推导和基于仿真平台PSCAD对不同风速时风电场的出力及并网点的电压进行计算,结果表明,BESS-STATCOM集成单元具有快速功率调节能力,使风力发电单元可作为调度机组单元运行;在求解包含风电场的电力系统潮流时,可以将其视为PV节点,而且能够显著提高电网的运行稳定性和供电可靠性。展开更多
为了平抑风功率波动,并优化风电场出力特性,基于双电池组拓扑结构的电池储能系统(Battery Energy Storage System,BESS)提出了在短期内平抑风功率波动的新型控制策略。该策略基于即时控制策略,把未来风功率波动对当前储能电池充放电行...为了平抑风功率波动,并优化风电场出力特性,基于双电池组拓扑结构的电池储能系统(Battery Energy Storage System,BESS)提出了在短期内平抑风功率波动的新型控制策略。该策略基于即时控制策略,把未来风功率波动对当前储能电池充放电行为的影响纳入考虑范围。双BESS则根据策略需求进行充电或放电,任一电池组电量达到满充或满放,则两组电池的工作状态同时切换。在新型控制策略中通过风电预测并结合滚动优化法实现双BESS动态控制。实践表明该策略在风电出力特性上不仅取得了较好的平抑效果,而且能降低因储能容量不足引起的瞬时大功率波动。在电池特性上,由于采用双BESS,很大程度上降低了电池充放电次数,延长了电池寿命。展开更多
文摘陆上风电全直流系统能有效解决谐波谐振、无功传输等问题,是未来风力发电系统的发展方向,其低电压穿越(low voltage ride through,LVRT)能力是系统稳定运行的保障。文中基于系统拓扑及其运行控制策略,剖析网侧电压跌落时聚集在陆上风电全直流发电系统直流环节的盈余功率,分析常规LVRT策略在风电全直流系统中的适用性。考虑电网对风电系统储能配置的要求,兼顾风电机组自启动特性提出利用电池储能存储低电压故障下直流母线的盈余功率实现LVRT的控制策略。在PSCAD/EMTDC仿真平台搭建陆上风电全直流发电系统模型,对所提策略进行仿真验证。结果表明,所提控制策略能够提升风电全直流发电系统的LVRT能力,促进直流母线电压的快速恢复;电池储能在故障期间吸收盈余能量,在风电机组自启动期间提供能量,提高了能量与储能的利用率。
文摘为有效提高风电场的并网运行能力,将电池储能系统(battery energy storage system,BESS)-静止同步补偿器(static compensator,STATCOM)串联集成单元与风力发电单元相结合,建立基于Park变换的BESS-STATCOM集成单元和基于异步发电机风力发电系统的整体动态数学模型,通过理论推导和基于仿真平台PSCAD对不同风速时风电场的出力及并网点的电压进行计算,结果表明,BESS-STATCOM集成单元具有快速功率调节能力,使风力发电单元可作为调度机组单元运行;在求解包含风电场的电力系统潮流时,可以将其视为PV节点,而且能够显著提高电网的运行稳定性和供电可靠性。
文摘为了平抑风功率波动,并优化风电场出力特性,基于双电池组拓扑结构的电池储能系统(Battery Energy Storage System,BESS)提出了在短期内平抑风功率波动的新型控制策略。该策略基于即时控制策略,把未来风功率波动对当前储能电池充放电行为的影响纳入考虑范围。双BESS则根据策略需求进行充电或放电,任一电池组电量达到满充或满放,则两组电池的工作状态同时切换。在新型控制策略中通过风电预测并结合滚动优化法实现双BESS动态控制。实践表明该策略在风电出力特性上不仅取得了较好的平抑效果,而且能降低因储能容量不足引起的瞬时大功率波动。在电池特性上,由于采用双BESS,很大程度上降低了电池充放电次数,延长了电池寿命。