期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
额外数据包注入攻击下基于高斯混合模型的安全状态估计
1
作者
仇海涛
王子乐
朱翠
《中国惯性技术学报》
北大核心
2025年第7期736-742,共7页
针对线性时不变系统在额外数据包注入攻击下的安全状态估计问题(受损传感器数量不限),提出了一种基于高斯混合模型的测量值估计算法。首先,采用期望最大化(EM)算法对受损测量值进行聚类和融合,并引入误差补偿器修正聚类过程中的误差,从...
针对线性时不变系统在额外数据包注入攻击下的安全状态估计问题(受损传感器数量不限),提出了一种基于高斯混合模型的测量值估计算法。首先,采用期望最大化(EM)算法对受损测量值进行聚类和融合,并引入误差补偿器修正聚类过程中的误差,从而得到测量估计值。其次,设计了一种带补偿器的状态估计方法,有效提高了系统估计精度,使系统性能受损坏传感器数量的影响较小,在损坏传感器数量超过总数的一半时仍保持有效。仿真结果表明,当被攻击传感器的数量为3、7和10时,相比于直接丢弃被攻击传感器的测量值,所提方法的状态估计精度分别提升58%、88%和97%。
展开更多
关键词
安全状态估计
高斯混合模型
额外数据包注入攻击
误差补偿器
在线阅读
下载PDF
职称材料
题名
额外数据包注入攻击下基于高斯混合模型的安全状态估计
1
作者
仇海涛
王子乐
朱翠
机构
北京信息科技大学高动态导航技术北京市重点实验室
中国联合网络通信集团有限公司陕西分公司
北京信息科技大学信息与通信工程学院
出处
《中国惯性技术学报》
北大核心
2025年第7期736-742,共7页
基金
北京市自然科学基金(4222052)
北京信息科技大学“勤信人才”培育计划项目(QXTCP C202110)
北京信息科技大学促进高校分类发展重点研究培育项目(2121YJPY221)。
文摘
针对线性时不变系统在额外数据包注入攻击下的安全状态估计问题(受损传感器数量不限),提出了一种基于高斯混合模型的测量值估计算法。首先,采用期望最大化(EM)算法对受损测量值进行聚类和融合,并引入误差补偿器修正聚类过程中的误差,从而得到测量估计值。其次,设计了一种带补偿器的状态估计方法,有效提高了系统估计精度,使系统性能受损坏传感器数量的影响较小,在损坏传感器数量超过总数的一半时仍保持有效。仿真结果表明,当被攻击传感器的数量为3、7和10时,相比于直接丢弃被攻击传感器的测量值,所提方法的状态估计精度分别提升58%、88%和97%。
关键词
安全状态估计
高斯混合模型
额外数据包注入攻击
误差补偿器
Keywords
secure state estimation
Gaussian mixture model
extra packet injection attack
error compensator
分类号
V475.3 [航空宇航科学与技术—飞行器设计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
额外数据包注入攻击下基于高斯混合模型的安全状态估计
仇海涛
王子乐
朱翠
《中国惯性技术学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部