The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse elect...The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.展开更多
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.
基金Project(51275116)supported by the National Natural Science Foundation of ChinaProject(2012ZE77010)supported by the Aero Science Foundation of ChinaProject(LBH-Q11090)supported by the Postdoctoral Science Research Development Foundation of Heilongjiang Province,China
文摘The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.