提出了一种基于频繁子树模式的GML文档结构聚类算法GCFS(GML Clustering based on Frequent Subtree patterns),与其他相关算法不同,该算法首先挖掘GML文档集合中的最大与闭合频繁Induced子树,并将其作为聚类特征,根据频繁子树的大小赋...提出了一种基于频繁子树模式的GML文档结构聚类算法GCFS(GML Clustering based on Frequent Subtree patterns),与其他相关算法不同,该算法首先挖掘GML文档集合中的最大与闭合频繁Induced子树,并将其作为聚类特征,根据频繁子树的大小赋予不同的权值,采用余弦函数定义相似度,利用K-Means算法对聚类特征进行聚类。实验结果表明算法GCFS是有效的,具有较高的聚类效率,性能优于其他同类算法。展开更多
针对基于模式增长原理的嵌入式子树挖掘算法——TreeGrowth(TG)算法挖掘子树过大与内存消耗大缺点,在分区挖掘思想的基础上,提出了一种新算法——PTG(partition tree growth)算法。PTG算法将数据库划分成多个分区,先用TG算法进行挖掘,...针对基于模式增长原理的嵌入式子树挖掘算法——TreeGrowth(TG)算法挖掘子树过大与内存消耗大缺点,在分区挖掘思想的基础上,提出了一种新算法——PTG(partition tree growth)算法。PTG算法将数据库划分成多个分区,先用TG算法进行挖掘,得到每个分区的局部频繁子树。根据全局支持数进行筛选,得到全局频繁子树,有效地减少了挖掘的子树,有效地降低了内存的开销。仿真实验结果表明,PTG算法能够解决在大数据集上挖掘时出现内存空间不足的问题,验证了其有效性与健壮性。展开更多
文摘提出了一种基于频繁子树模式的GML文档结构聚类算法GCFS(GML Clustering based on Frequent Subtree patterns),与其他相关算法不同,该算法首先挖掘GML文档集合中的最大与闭合频繁Induced子树,并将其作为聚类特征,根据频繁子树的大小赋予不同的权值,采用余弦函数定义相似度,利用K-Means算法对聚类特征进行聚类。实验结果表明算法GCFS是有效的,具有较高的聚类效率,性能优于其他同类算法。
文摘针对基于模式增长原理的嵌入式子树挖掘算法——TreeGrowth(TG)算法挖掘子树过大与内存消耗大缺点,在分区挖掘思想的基础上,提出了一种新算法——PTG(partition tree growth)算法。PTG算法将数据库划分成多个分区,先用TG算法进行挖掘,得到每个分区的局部频繁子树。根据全局支持数进行筛选,得到全局频繁子树,有效地减少了挖掘的子树,有效地降低了内存的开销。仿真实验结果表明,PTG算法能够解决在大数据集上挖掘时出现内存空间不足的问题,验证了其有效性与健壮性。
基金Supported by the National Natural Science Foundation of China under Grant Nos.60473075 60773063 (国家自然科学基金)+2 种基金the Key Program National Natural Science Foundation of China under Grant No.60533110 (国家自然科学基金重点项目)the National Basic Research Program of China under Grant No.2006CB303000 (国家重点基础研究发展计划(973))the Program for New Century Excellent Talents in University (NCET) under Grant No.NCET-05-0333 (新世纪优秀人才支持计划)