期刊文献+
共找到410篇文章
< 1 2 21 >
每页显示 20 50 100
面向时间有序事务数据的聚簇频繁模式挖掘
1
作者 王少鹏 牛超煜 《软件学报》 北大核心 2025年第5期2342-2361,共20页
首次对时间有序事务数据中聚簇频繁模式的挖掘问题进行研究.为了解决Naive算法处理该问题时存在冗余运算的问题,提出一种改进的聚簇频繁模式挖掘算法ICFPM(improved cluster frequent pattern mining).该算法使用2种优化策略,一方面可... 首次对时间有序事务数据中聚簇频繁模式的挖掘问题进行研究.为了解决Naive算法处理该问题时存在冗余运算的问题,提出一种改进的聚簇频繁模式挖掘算法ICFPM(improved cluster frequent pattern mining).该算法使用2种优化策略,一方面可以利用定义的参数minCF,有效减少挖掘结果的搜索空间,另一方面可以参考(n–1)项集的判别结果加速聚簇频繁n项集的判别过程,算法还使用了ICFPM-list结构来减少候选n项集的构建开销.基于两个真实世界数据集的仿真实验证明了ICFPM算法的有效性,与Naive算法相比,ICFPM算法在时间和空间效率方面得到了大幅度的提高,是解决聚簇频繁模式挖掘的有效方法. 展开更多
关键词 时间有序事务数据 聚簇 频繁模式 数据挖掘 向下闭包
在线阅读 下载PDF
带频繁区域的空间并置模式挖掘方法
2
作者 罗浩瑜 芦俊丽 陈雪瑶 《计算机应用研究》 北大核心 2025年第7期2086-2095,共10页
聚焦于空间并置模式挖掘,旨在探索空间特征间的共存关系。传统方法虽能识别频繁共存的模式,但无法确定这些模式在空间中的具体分布区域。为了解决这一问题,提出了一种新颖的带频繁区域的空间并置模式挖掘算法。算法分为两个阶段,第一阶... 聚焦于空间并置模式挖掘,旨在探索空间特征间的共存关系。传统方法虽能识别频繁共存的模式,但无法确定这些模式在空间中的具体分布区域。为了解决这一问题,提出了一种新颖的带频繁区域的空间并置模式挖掘算法。算法分为两个阶段,第一阶段采用凝聚层次聚类方法,根据数据特性进行空间分区,进而在各聚类簇内确认实例间的邻近关系;第二阶段引入了并置模式存在区域与区域参与度概念,基于此逐阶识别并置模式的频繁区域。为加速频繁区域识别和模式挖掘过程,算法通过子模式的扩展区域快速构建高阶模式的候选区域,利用区域粗参与度提前筛除不可能频繁的候选区域。最后,通过在真实和模拟数据集上进行广泛的实验,验证了该算法在生成带频繁区域的空间并置模式数量、频繁区域的准确性以及频繁区域的精确度方面的表现。在真实数据集上,该算法的精确度为0.83~0.95。此外,在验证算法可扩展性的实验中,当数据集特征数量适中时,PROC-Col的性能较现有的先进算法multi-level提升了约2倍。 展开更多
关键词 空间并置模式挖掘 频繁区域 候选区域 拓展区域 区域粗参与度
在线阅读 下载PDF
一种基于关联程度的高效用数量比频繁模式挖掘算法 被引量:1
3
作者 王辉 李燕 +2 位作者 丁丁 吴坤 黄雅平 《计算机工程与科学》 CSCD 北大核心 2024年第9期1702-1710,共9页
高效用频繁模式挖掘算法运用数据项的重要度信息,能够从数据中挖掘出更重要的频繁模式,而高效用数量比频繁模式挖掘算法可以进一步研究频繁模式中数据项的数量比例关系,是目前数据挖掘领域中的研究课题。从提高算法性能和实用性的角度... 高效用频繁模式挖掘算法运用数据项的重要度信息,能够从数据中挖掘出更重要的频繁模式,而高效用数量比频繁模式挖掘算法可以进一步研究频繁模式中数据项的数量比例关系,是目前数据挖掘领域中的研究课题。从提高算法性能和实用性的角度出发对高效用数量比频繁模式挖掘算法进行优化,提出了一种基于关联程度的高效用数量比频繁模式挖掘算法RHUQI-Miner。RHUQI-Miner首先提出关联程度的概念,依据关联程度构建项目关联程度结构,并给出关联剪枝优化策略,寻找关联程度更高的项目集合,减少冗余和无效的频繁模式;随后运用修正模式长度策略,修正挖掘过程中项集的效用信息,使算法可根据实际数据情况控制输出频繁模式的长度,进一步提升算法的性能,提高算法的实用性。通过对RHUQI-Miner在动车组PHM系统车载故障数据集上的实验结果进行分析,表明该算法能够有效减少挖掘过程中的时间以及内存消耗,可以得出该算法适用于铁路实际数据和业务的有效结论。 展开更多
关键词 高效用 数量比 频繁模式挖掘 关联剪枝 修正模式长度
在线阅读 下载PDF
基于频繁模式挖掘算法的中医问诊策略研究
4
作者 李瑞珍 夏春明 +2 位作者 王忆勤 许朝霞 熊玉洁 《世界科学技术-中医药现代化》 CSCD 北大核心 2024年第6期1608-1617,共10页
目的研究中医问诊策略,实现快速捕捉患者的关键病情信息,推进中医问诊客观化的发展。方法采用基于关联分析中频繁模式挖掘算法的症状提问模型,并使用交叉合并的方法建立中医单系统症状提问与多系统综合症状提问的中医症状问诊策略,达到... 目的研究中医问诊策略,实现快速捕捉患者的关键病情信息,推进中医问诊客观化的发展。方法采用基于关联分析中频繁模式挖掘算法的症状提问模型,并使用交叉合并的方法建立中医单系统症状提问与多系统综合症状提问的中医症状问诊策略,达到通过最短的时间、最高的效率来获取到患者关键病情信息。结果实现了从单系统问诊到五系统综合问诊的突破,通过单系统与五系统两种症状提问模式实现了高效获取患者病情信息的过程,且对比传统量表提问方式,系统减少了65%的提问次数就可获取到患者92%的症状信息,大大提高了对患者症状信息获取的效率。结论在两种不同的症状提问模式下,打破了中医基于量表来询问患者的传统问诊模式,缩短了对患者症状获取的时间,简化了问诊流程,减少了由于经验不足或人为主观造成的差异,能够用于中医临床辅助诊断中。 展开更多
关键词 中医问诊 频繁模式挖掘算法 症状关联性 问诊策略
在线阅读 下载PDF
SFPMax——基于排序FP树的最大频繁模式挖掘算法 被引量:26
5
作者 秦亮曦 史忠植 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期217-223,共7页
FP-growth算法是目前较高效的频繁模式挖掘算法之一 ,但将它用于最大频繁模式挖掘时却不能获得较高的效率 深入分析了造成低效的原因 ,提出了利用排序FP 树挖掘最大频繁模式的算法SFP- Max 算法的主要思想如下 :①基于排序FP 树 ;②利... FP-growth算法是目前较高效的频繁模式挖掘算法之一 ,但将它用于最大频繁模式挖掘时却不能获得较高的效率 深入分析了造成低效的原因 ,提出了利用排序FP 树挖掘最大频繁模式的算法SFP- Max 算法的主要思想如下 :①基于排序FP 树 ;②利用最大频繁模式的性质 ,减小产生的候选最大模式的规模 ;③设置中间结果集 ,缩小检验的范围 ,从而减少检验候选最大模式的时间 实验表明 ,SFP -Max是一个高效的最大频繁模式的挖掘算法 ,对于测试的数据集 ,SFP 展开更多
关键词 数据挖掘 关联规则 排序FP-树 最大频繁模式
在线阅读 下载PDF
频繁时序模式挖掘方法综述 被引量:2
6
作者 唐增金 徐贞顺 +3 位作者 苏梦瑶 刘纳 王振彪 张文豪 《计算机工程与应用》 CSCD 北大核心 2024年第17期48-61,共14页
频繁时序模式挖掘是指从时间序列数据中发现频繁出现的模式或规律的过程,其目的是可以帮助理解时间序列数据中的重要特征,例如周期性、趋势和异常等,有助于预测未来的发展趋势和识别异常情况等。根据近年来的频繁时序模式挖掘方法的相... 频繁时序模式挖掘是指从时间序列数据中发现频繁出现的模式或规律的过程,其目的是可以帮助理解时间序列数据中的重要特征,例如周期性、趋势和异常等,有助于预测未来的发展趋势和识别异常情况等。根据近年来的频繁时序模式挖掘方法的相关文献调研,按照关键技术和代表性算法将其分为三类,即基于结构约束的频繁时序模式挖掘方法、基于参数约束的频繁时序模式挖掘方法和基于窗口的频繁时序模式挖掘方法。陈述了频繁时序模式挖掘方法的背景以及各方法的特点;分别介绍了三类挖掘方法的发展以及分类,并从优缺点和性能等方面对各类改进方法进行了详细的对比分析;对频繁时序模式挖掘方法进行归纳和总结,并对频繁时序模式挖掘方法的未来研究方向进行了展望。 展开更多
关键词 时序数据 频繁时序模式 结构约束 参数约束 窗口 数据挖掘
在线阅读 下载PDF
面向大图的Top-Rank-K频繁模式挖掘算法 被引量:2
7
作者 邹杰军 王欣 +5 位作者 石俊豪 兰卓 方宇 张翀 谢文波 沈玲珍 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期38-52,共15页
频繁模式挖掘(Frequent Pattern Mining,FPM)在社交分析中扮演重要角色,能从海量社交数据中挖掘用户行为的模式和规律,为社交网络的研究提供新的认识和决策支持.然而,对于一个FPM任务,设置一个合适的支持度阈值不容易;此外,FPM作为一个N... 频繁模式挖掘(Frequent Pattern Mining,FPM)在社交分析中扮演重要角色,能从海量社交数据中挖掘用户行为的模式和规律,为社交网络的研究提供新的认识和决策支持.然而,对于一个FPM任务,设置一个合适的支持度阈值不容易;此外,FPM作为一个NP-hard问题,不存在多项式时间的算法.针对上述问题,提出一种无须用户设置初始支持度阈值的算法ItrMiner.该算法使用一种新的兴趣度指标对模式进行评估,综合考虑模式的大小和支持度,挖掘Top-Rank-K频繁模式.同时,为了解决去除初始支持度阈值后在算法剪枝阶段遇到的困难,提出基于树模式优先识别的策略和模式扩展约束策略,减少非必要候选模式的生成.在真实图和人工合成图数据集上进行了广泛的实验,证明ItrMiner在执行效率和可扩展性方面表现出色,尤其在稠密的数据集上,其时间开销仅为基线算法Top-K Graph Miner的13.2%.另外,提出的模式扩展约束策略的有效性较高,和无扩展约束优化的ItrMiner_(nopt)算法相比,效率提升最高可达9.5倍. 展开更多
关键词 频繁模式挖掘 社交分析 支持度阈值 兴趣度
在线阅读 下载PDF
基于权限频繁模式挖掘算法的Android恶意应用检测方法 被引量:48
8
作者 杨欢 张玉清 +1 位作者 胡予濮 刘奇旭 《通信学报》 EI CSCD 北大核心 2013年第S1期106-115,共10页
Android应用所申请的各个权限可以有效反映出应用程序的行为模式,而一个恶意行为的产生需要多个权限的配合,所以通过挖掘权限之间的关联性可以有效检测未知的恶意应用。以往研究者大多关注单一权限的统计特性,很少研究权限之间关联性的... Android应用所申请的各个权限可以有效反映出应用程序的行为模式,而一个恶意行为的产生需要多个权限的配合,所以通过挖掘权限之间的关联性可以有效检测未知的恶意应用。以往研究者大多关注单一权限的统计特性,很少研究权限之间关联性的统计特性。因此,为有效检测Android平台未知的恶意应用,提出了一种基于权限频繁模式挖掘算法的Android恶意应用检测方法,设计了能够挖掘权限之间关联性的权限频繁模式挖掘算法—PApriori。基于该算法对49个恶意应用家族进行权限频繁模式发现,得到极大频繁权限项集,从而构造出权限关系特征库来检测未知的恶意应用。最后,通过实验验证了该方法的有效性和正确性,实验结果表明所提出的方法与其他相关工作对比效果更优。 展开更多
关键词 频繁模式 数据挖掘 恶意应用检测 权限特征 ANDROID系统
在线阅读 下载PDF
挖掘数据流中的频繁模式 被引量:25
9
作者 刘学军 徐宏炳 +2 位作者 董逸生 王永利 钱江波 《计算机研究与发展》 EI CSCD 北大核心 2005年第12期2192-2198,共7页
发现数据流中的频繁项是数据流挖掘中最基本的问题之一·数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用·针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法·... 发现数据流中的频繁项是数据流挖掘中最基本的问题之一·数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用·针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法·算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘·通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε·分析和实验表明算法有较好的性能· 展开更多
关键词 数据流 频繁模式 FP—DS算法 流数据挖掘
在线阅读 下载PDF
从不确定图中挖掘频繁子图模式 被引量:33
10
作者 邹兆年 李建中 +1 位作者 高宏 张硕 《软件学报》 EI CSCD 北大核心 2009年第11期2965-2976,共12页
研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该... 研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3-5个数量级,有很高的效率和可扩展性. 展开更多
关键词 不确定图 挖掘 频繁子图模式
在线阅读 下载PDF
数据流中一种快速启发式频繁模式挖掘方法 被引量:14
11
作者 张昕 李晓光 +1 位作者 王大玲 于戈 《软件学报》 EI CSCD 北大核心 2005年第12期2099-2105,共7页
在现有的数据流频繁模式挖掘算法中,批处理方法平均处理时间短,但需要积攒足够的数据,使得其实时性差且查询粒度粗;而启发式方法可以直接处理数据流,但处理速度慢.提出一种改进的字典树结构——IL-TREE(improvedlexicographictree),并... 在现有的数据流频繁模式挖掘算法中,批处理方法平均处理时间短,但需要积攒足够的数据,使得其实时性差且查询粒度粗;而启发式方法可以直接处理数据流,但处理速度慢.提出一种改进的字典树结构——IL-TREE(improvedlexicographictree),并在其基础上提出一种新的启发式算法FPIL-Stream(frequentpatternminingbasedonimprovedlexicographictree),在更新模式和生成新模式的过程中,可以快速定位历史模式.算法结合了倾斜窗口策略,可以详细记录历史信息.该算法在及时处理数据流的前提下,也降低了数据的平均处理时间,并且提供了更细的查询粒度. 展开更多
关键词 数据挖掘 数据流 频繁模式 倾斜窗口
在线阅读 下载PDF
数据流频繁模式挖掘研究进展 被引量:34
12
作者 潘云鹤 王金龙 徐从富 《自动化学报》 EI CSCD 北大核心 2006年第4期594-602,共9页
现实世界和工程实践产生了大量的数据流,这种数据不同于传统的静态数据,对其进行有效处理和挖掘遇到了极大的挑战.如何使用有限存储空间进行快速和近似的频繁模式挖掘是数据流挖掘的基本问题,具有非常重要的研究价值和实践意义,已经引... 现实世界和工程实践产生了大量的数据流,这种数据不同于传统的静态数据,对其进行有效处理和挖掘遇到了极大的挑战.如何使用有限存储空间进行快速和近似的频繁模式挖掘是数据流挖掘的基本问题,具有非常重要的研究价值和实践意义,已经引起了国内外研究者的广泛关注.本文深入分析数据流中的频繁模式挖掘,对其特点和算法进行较为全面的总结和分类论述,并讨论了存在的主要问题和未来的研究方向. 展开更多
关键词 数据挖掘 数据流 频繁模式 近似算法
在线阅读 下载PDF
基于压缩FP-树和数组技术的频繁模式挖掘算法 被引量:16
13
作者 秦亮曦 苏永秀 +1 位作者 刘永彬 梁碧珍 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期244-249,共6页
FP-growth算法是目前较高效的频繁模式挖掘算法之一.它只需扫描数据库两次,而且不需要产生和测试候选集,避免了这些费时的工作,因此该算法具有较高的效率.然而,FP-growth算法需要递归地生成大量的条件FP-树,这耗费了大量的存储空间和时... FP-growth算法是目前较高效的频繁模式挖掘算法之一.它只需扫描数据库两次,而且不需要产生和测试候选集,避免了这些费时的工作,因此该算法具有较高的效率.然而,FP-growth算法需要递归地生成大量的条件FP-树,这耗费了大量的存储空间和时间.综合已有的几项优势技术,提出了一种频繁模式挖掘算法CFPmine.一是采用了基于压缩FP-树的约束子树的挖掘方法,避免在挖掘过程中生成条件FP-树,减少内存占用;二是采用基于数组的技术,减少FP-树的遍历时间,提高算法的效率.另外,在算法中还实现了统一的内存管理.实验结果表明,CFPmine是一个高效的频繁模式挖掘算法,其性能优于Apriori,Eclat和FP-growth算法,而需要的内存却少于FP-growth算法. 展开更多
关键词 数据挖掘 关联规则 频繁模式 压缩FP-树
在线阅读 下载PDF
基于Spark的并行频繁模式挖掘算法 被引量:13
14
作者 曹博 倪建成 +2 位作者 李淋淋 于苹苹 姚彬修 《计算机工程与应用》 CSCD 北大核心 2016年第20期86-91,共6页
在大数据环境下Apriori频繁模式挖掘算法在数据处理过程具有预先设定最小阈值、时间复杂度高等缺陷,为此采用多阶段挖掘策略实现并行化频繁模式挖掘算法PTFP-Apriori。首先将预处理数据以模式树的形式存储,通过最为频繁的k个模式得到最... 在大数据环境下Apriori频繁模式挖掘算法在数据处理过程具有预先设定最小阈值、时间复杂度高等缺陷,为此采用多阶段挖掘策略实现并行化频繁模式挖掘算法PTFP-Apriori。首先将预处理数据以模式树的形式存储,通过最为频繁的k个模式得到最优阈值。然后根据该值删除预期不能成长为频繁的模式以降低计算规模,并利用弹性分布式数据集RDD完成统计项集支持度计数、候选项集生成的工作。实验分析表明相比于传统的频繁模式挖掘算法,该算法具有更高的效率以及可扩展性。 展开更多
关键词 大数据 频繁模式挖掘 TOP-K 模式 并行计算
在线阅读 下载PDF
基于改进的FP-tree的频繁模式挖掘算法 被引量:21
15
作者 李也白 唐辉 +1 位作者 张淳 贺玉明 《计算机应用》 CSCD 北大核心 2011年第1期101-103,共3页
FP-growth算法是一种基于FP-tree数据结构的高效的频繁模式挖掘算法,它不产生候选集。构造频繁模式树FP-tree需扫描数据库两次,在第二遍扫描中还扫描了那些仅包含了非频繁项的事务,针对此问题,在深入分析了FP-tree特性的基础上,改进了FP... FP-growth算法是一种基于FP-tree数据结构的高效的频繁模式挖掘算法,它不产生候选集。构造频繁模式树FP-tree需扫描数据库两次,在第二遍扫描中还扫描了那些仅包含了非频繁项的事务,针对此问题,在深入分析了FP-tree特性的基础上,改进了FP-tree构造过程,同时用一种基于Hash表的辅助存储结构,节省了项目查找时间,提高了挖掘效率。 展开更多
关键词 数据挖掘 关联规则 频繁模式 FP—growth算法 FP—tree
在线阅读 下载PDF
不产生候选的快速投影频繁模式树挖掘算法 被引量:11
16
作者 何炎祥 向剑文 +1 位作者 朱骁峰 孔维强 《计算机科学》 CSCD 北大核心 2002年第11期71-75,共5页
Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especia... Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently. 展开更多
关键词 事务数据库 快速投影频繁模式挖掘算法 数据挖掘 频繁项集
在线阅读 下载PDF
挖掘最大频繁模式的新方法 被引量:15
17
作者 刘君强 孙晓莹 +1 位作者 王勋 潘云鹤 《计算机学报》 EI CSCD 北大核心 2004年第10期1328-1334,共7页
由于其内在的计算复杂性 ,挖掘密集型数据集的频繁模式完全集非常困难 ,解决方案之一是挖掘最大频繁模式集 .该文在频繁模式完全集挖掘算法OpportuneProject基础上 ,提出了挖掘最大频繁模式的新算法MOP .它采用宽度与深度优先相结合的... 由于其内在的计算复杂性 ,挖掘密集型数据集的频繁模式完全集非常困难 ,解决方案之一是挖掘最大频繁模式集 .该文在频繁模式完全集挖掘算法OpportuneProject基础上 ,提出了挖掘最大频繁模式的新算法MOP .它采用宽度与深度优先相结合的混合搜索策略 ,能恰当地选择不同的支持集表示和投影方法 ,将闭合性剪裁和一般性剪裁相结合 ,并适时前窥 ,实现搜索与剪裁效率最优化 .实验表明 ,MOP效率是MaxMiner的 2~ 8倍 ,比MAFIA高 2个数量级以上 . 展开更多
关键词 知识发现 数据挖掘 最大频繁模式 关联规则 混合搜索策略 完全集挖掘算法 MOP
在线阅读 下载PDF
改进的基于频繁模式树的最大频繁项集挖掘算法——FP-MFIA 被引量:16
18
作者 杨鹏坤 彭慧 +1 位作者 周晓锋 孙玉庆 《计算机应用》 CSCD 北大核心 2015年第3期775-778,共4页
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法——FPMFIA。该算法根据FP-tree的项目头... 针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法——FPMFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。 展开更多
关键词 最大频繁项集 频繁模式 数据挖掘 关联规则 频繁项集
在线阅读 下载PDF
基于频繁模式树的约束最大频繁项集挖掘算法 被引量:15
19
作者 花红娟 张健 陈少华 《计算机工程》 CAS CSCD 北大核心 2011年第9期78-80,共3页
多数最大频繁项集挖掘算法产生候选项目集的代价很高,而实际应用中用户只关心部分关联规则。针对该问题,提出一种基于频繁模式树的约束最大频繁项集快速挖掘算法。该算法能随时删除不满足约束条件的项集,无需生成候选项目集,由此提高挖... 多数最大频繁项集挖掘算法产生候选项目集的代价很高,而实际应用中用户只关心部分关联规则。针对该问题,提出一种基于频繁模式树的约束最大频繁项集快速挖掘算法。该算法能随时删除不满足约束条件的项集,无需生成候选项目集,由此提高挖掘效率。实验结果证明,该算法的效率优于同类算法。 展开更多
关键词 数据挖掘 最大频繁项集 约束最大频繁项集 频繁模式 项约束
在线阅读 下载PDF
差分隐私保护下一种精确挖掘top-k频繁模式方法 被引量:29
20
作者 张啸剑 王淼 孟小峰 《计算机研究与发展》 EI CSCD 北大核心 2014年第1期104-114,共11页
频繁模式挖掘是分析事务数据集常用技术.然而,当事务数据集含有敏感数据时(如用户行为记录、电子病例等),直接发布频繁模式及其支持度计数会给个人隐私带来相当大的风险.对此提出了一种满足ε-差分隐私的top-k频繁模式挖掘算法DP-topkP(... 频繁模式挖掘是分析事务数据集常用技术.然而,当事务数据集含有敏感数据时(如用户行为记录、电子病例等),直接发布频繁模式及其支持度计数会给个人隐私带来相当大的风险.对此提出了一种满足ε-差分隐私的top-k频繁模式挖掘算法DP-topkP(differentially private top-kpattern mining).该算法利用指数机制从候选频繁模式集合中挑选出top-k个携带真实支持度计数的模式;采用拉普拉斯机制产生的噪音扰动所选模式的真实支持度计数;为了增强输出模式的可用性,采用后置处理技术对top-k个模式的噪音支持度计数进行求精处理.从理论角度证明了该算法满足ε-差分隐私,并符合(λ,δ)-useful要求.实验结果证明了DP-topkP算法具有较好的准确性、可用性和可扩展性. 展开更多
关键词 频繁模式挖掘 top-k模式 差分隐私 拉普拉斯机制 指数机制
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部