期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于最大频繁序列模式挖掘的App-DDoS攻击的异常检测 被引量:7
1
作者 李锦玲 汪斌强 《电子与信息学报》 EI CSCD 北大核心 2013年第7期1739-1745,共7页
为了动态、准确、高效地描述用户的访问行为,实现对不同应用层分布式拒绝服务(Application-layerDistributed Denial of Service,App-DDoS)攻击行为的透明检测,该文提出基于最大频繁序列模式挖掘的ADA_MFSP(App-DDoS Detection Algorith... 为了动态、准确、高效地描述用户的访问行为,实现对不同应用层分布式拒绝服务(Application-layerDistributed Denial of Service,App-DDoS)攻击行为的透明检测,该文提出基于最大频繁序列模式挖掘的ADA_MFSP(App-DDoS Detection Algorithm based on Maximal Frequent Sequential Pattern mining)检测模型。该模型在对正常Web访问序列数据库(Web Access Sequence Database,WASD)及待检测WASD进行最大频繁序列模式挖掘的基础上,引入序列比对平均异常度,联合浏览时间平均异常度、请求循环平均异常度等有效检测属性,最终实现攻击行为的异常检测。实验证明:ADA_MFSP模型不仅能有效检测各类App-DDoS攻击,且有良好的检测灵敏度。 展开更多
关键词 应用层分布式拒绝服务攻击 检测模型 频繁序列模式挖掘 异常度
在线阅读 下载PDF
本地化差分隐私下的频繁序列模式挖掘算法PrivSPM 被引量:5
2
作者 黄硕 李艳辉 曹建秋 《计算机应用》 CSCD 北大核心 2023年第7期2057-2064,共8页
序列数据中可能包含大量敏感信息,因此直接对序列数据的频繁模式进行挖掘存在泄露用户隐私信息的风险。本地化差分隐私(LDP)能够抵御具有任意背景知识的攻击者,可以对敏感信息提供更全面的保护。序列数据内在序列性和高维度的特点为LDP... 序列数据中可能包含大量敏感信息,因此直接对序列数据的频繁模式进行挖掘存在泄露用户隐私信息的风险。本地化差分隐私(LDP)能够抵御具有任意背景知识的攻击者,可以对敏感信息提供更全面的保护。序列数据内在序列性和高维度的特点为LDP应用于频繁序列模式挖掘带来了挑战。为解决这个问题,提出一种满足ε-LDP的top-k频繁序列模式挖掘算法PrivSPM。该算法结合填充和采样技术、自适应频率估计算法与频繁项预测技术来构造候选集;基于新域,利用基于指数机制的策略对用户数据进行扰动,并结合频率估计算法识别最终的频繁序列模式。理论分析证明了该算法满足ε-LDP。在3个真实数据集上的实验结果表明,PrivSPM算法在纳真率(TPR)和归一化累积排名(NCR)上明显高于对比算法,能有效提高挖掘结果的准确度。 展开更多
关键词 本地化差分隐私 隐私保护 频繁序列模式挖掘 指数机制 数据挖掘
在线阅读 下载PDF
基于频繁轨迹序列模式挖掘的路径推荐方法 被引量:3
3
作者 段宗涛 任国亮 +3 位作者 康军 黄山 杜锦光 王倩倩 《太原理工大学学报》 CAS 北大核心 2022年第2期240-247,共8页
出行路径推荐是智能交通领域的重要研究内容之一。传统路径推荐方法往往基于路径最短或通行时间最短等单一因素进行路径推荐,而忽略了城市人群出行模式对路径推荐过程的影响。针对上述问题,提出了一种基于频繁轨迹序列模式的路径推荐方... 出行路径推荐是智能交通领域的重要研究内容之一。传统路径推荐方法往往基于路径最短或通行时间最短等单一因素进行路径推荐,而忽略了城市人群出行模式对路径推荐过程的影响。针对上述问题,提出了一种基于频繁轨迹序列模式的路径推荐方法,在数据预处理阶段基于历史轨迹数据库挖掘城市不同时段的频繁序列模式,并以此构建频繁路径序列模式库。在路径推荐阶段,对于给定起止点后确定的一组候选路径集合,利用所提出的长短模式权重评估模型对其进行量化评估并进行排序。然后,取出其评估值为Top-n的路径为用户进行推荐。通过4组模拟场景对推荐结果进行分析,结果表明该推荐方法具备合理性,同时将推荐结果和传统的最短路径和测试集比较分析,证明其推荐的路径更优,与传统的路径推荐算法相比其运行速度也更快。 展开更多
关键词 智能交通 时空轨迹数据 最短路径 频繁轨迹序列模式挖掘 路径推荐
在线阅读 下载PDF
基于知识图谱和频繁序列挖掘的旅游路线推荐 被引量:30
4
作者 孙文平 常亮 +2 位作者 宾辰忠 古天龙 孙彦鹏 《计算机科学》 CSCD 北大核心 2019年第2期56-61,共6页
大数据在提供海量多源信息的同时,也带来了信息过载问题,这在旅游领域内表现得尤为突出。针对当前游客在制定旅行路线时需要花费大量时间和精力的现状,首先,提出一种融合多源旅游数据构建知识图谱的方法,有效地抽取相关旅游领域知识;其... 大数据在提供海量多源信息的同时,也带来了信息过载问题,这在旅游领域内表现得尤为突出。针对当前游客在制定旅行路线时需要花费大量时间和精力的现状,首先,提出一种融合多源旅游数据构建知识图谱的方法,有效地抽取相关旅游领域知识;其次,利用知识图谱及大量旅行游记生成旅游路线数据库,并提出一种能够根据游客类型生成海量候选路线的频繁路线序列模式挖掘算法;最后,设计了一种多维度路线搜索和排序机制来为用户推荐个性化的旅游路线。基于真实旅游大数据的实验结果表明,该方法可以同时考虑旅行天数、人物类型和景点类型喜好等多方面因素,帮助游客快速制定个性化的旅行路线,有效提升游览体验。 展开更多
关键词 旅游路线推荐 知识图谱 频繁序列模式挖掘 用户生成内容
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部