为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进...为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。展开更多
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith...In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.展开更多
文摘为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。
基金Projects(61362018,61861019)supported by the National Natural Science Foundation of ChinaProject(1402041B)supported by the Jiangsu Province Postdoctoral Scientific Research Project,China+1 种基金Project(16A174)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject([2016]283)supported by the Research Study and Innovative Experiment Project of College Students,China
文摘In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.