实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model, PLLM-RE),并针对循环...实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model, PLLM-RE),并针对循环经济政策进行了实体关系抽取研究。基于所提出的PLLM-RE框架,首先使用RoBERTa模型进行循环经济政策文本的实体识别,然后选取基于Transformer的双向编码器表示(bidirectional encoder representation from Transformers, BERT)模型进行循环经济政策实体关系抽取研究,以构建该政策领域的知识图谱。研究结果表明,PLLM-RE框架在循环经济政策实体关系抽取任务上的性能优于对比模型BiLSTM-ATT、PCNN、BERT以及ALBERT,验证了所提框架在循环经济政策实体关系抽取任务上的适配性和优越性,为后续循环经济领域资源的信息挖掘和政策分析提供了新思路。展开更多
目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bi...目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。展开更多
文摘实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model, PLLM-RE),并针对循环经济政策进行了实体关系抽取研究。基于所提出的PLLM-RE框架,首先使用RoBERTa模型进行循环经济政策文本的实体识别,然后选取基于Transformer的双向编码器表示(bidirectional encoder representation from Transformers, BERT)模型进行循环经济政策实体关系抽取研究,以构建该政策领域的知识图谱。研究结果表明,PLLM-RE框架在循环经济政策实体关系抽取任务上的性能优于对比模型BiLSTM-ATT、PCNN、BERT以及ALBERT,验证了所提框架在循环经济政策实体关系抽取任务上的适配性和优越性,为后续循环经济领域资源的信息挖掘和政策分析提供了新思路。
文摘目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。