期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
舆情事件向量预训练模型
1
作者 王楠 谭舒孺 +1 位作者 谢晓兰 李海荣 《计算机工程与应用》 CSCD 北大核心 2024年第18期189-197,共9页
目前舆情预测研究中,事件表示具有一定的主观性和静态性,没有充分表达出事件演化的动态性和演化性,很多特征需要通过分析事件发展的完整过程得到,导致构建的预测模型并不能实现舆情现象发生前的预警目的。构建了事件预训练模型,实现基... 目前舆情预测研究中,事件表示具有一定的主观性和静态性,没有充分表达出事件演化的动态性和演化性,很多特征需要通过分析事件发展的完整过程得到,导致构建的预测模型并不能实现舆情现象发生前的预警目的。构建了事件预训练模型,实现基于评论数据的事件特征向量自动生成,并用于训练下游舆情反转预测模型。结合事件的主观评论与时序信息,通过构造评论词、事件词向量、事件词、事件句,将抽象的事件特征向量生成问题转换为自然语言预处理问题,基于Transformer结构提出了一种新的建模方式,实现事件特征向量自动生成及舆情反转预测。提出的模型用于舆情反转预测下游任务时,在测试集中对反转事件的预测率达到100%,实现了反转点之前预测出反转现象的目的。同时,该预测模型还可以较为准确地预测生成第二天的事件句,在对测试集的n折交叉验证中仅有11%的事件出现了预测误差,为研究舆情演化相关问题提供数据和方法基础。 展开更多
关键词 舆情反转 事件特征训练 舆情演化 自然语言处理 TRANSFORMER
在线阅读 下载PDF
面向图文匹配任务的多层次图像特征融合算法 被引量:4
2
作者 郝志峰 李俊峰 +3 位作者 蔡瑞初 温雯 王丽娟 黎伊婷 《计算机应用研究》 CSCD 北大核心 2020年第3期951-956,共6页
现有主流的利用预训练卷积神经网络提取图像特征的方法存在仅使用单层预训练特征表征图像和预训练任务与实际研究任务不一致的问题,使得现有图文匹配方法无法充分利用图像特征,极易受到噪声特征干扰。针对上述问题,使用了预训练网络中... 现有主流的利用预训练卷积神经网络提取图像特征的方法存在仅使用单层预训练特征表征图像和预训练任务与实际研究任务不一致的问题,使得现有图文匹配方法无法充分利用图像特征,极易受到噪声特征干扰。针对上述问题,使用了预训练网络中的多层特征,并提出了多层次图像特征融合算法。在图文匹配的学习目标指导下,利用多层感知机(multi-layer perceptron)有监督地融合和降维多层次的预训练图像特征,生成融合图像特征,从而充分利用预训练特征,减少噪声干扰。实验结果表明,提出的融合算法可实现对预训练的图像特征更有效的利用,相比于使用单层次特征的方法能获得更好的图文匹配效果。 展开更多
关键词 图文匹配 多层次图像特征 预训练特征 融合图像特征 推荐系统
在线阅读 下载PDF
基于Prototype反向蒸馏的无监督多类别异常检测
3
作者 何立仁 彭博 池明旻 《计算机科学》 北大核心 2025年第2期202-211,共10页
无监督异常检测因只需要正常样本进行训练而被广泛应用于工业质检等领域。直接将现有的单类别异常检测方法应用到多类别异常检测中会导致性能显著下降,其中基于知识蒸馏的异常检测方法将预训练的教师模型关于正常样本的特征知识蒸馏到... 无监督异常检测因只需要正常样本进行训练而被广泛应用于工业质检等领域。直接将现有的单类别异常检测方法应用到多类别异常检测中会导致性能显著下降,其中基于知识蒸馏的异常检测方法将预训练的教师模型关于正常样本的特征知识蒸馏到学生模型中,然而它们在多类别异常检测中存在无法保证学生模型只学习到正常样本知识的问题。文中提出一种基于反向知识蒸馏框架的无监督多类别异常检测方法(Prototype based Reverse Distillation,PRD),其通过Multi-class Normal Prototype模块和Sparse Prototype Recall训练策略来学习教师模型关于多类别正常样本特征的Prototype,并以此来过滤学生模型的输入特征,从而确保学生模型只学习到教师模型关于正常样本的特征知识。PRD在多种工业异常检测数据集上性能均超越了现有的SOTA方法,定性、定量和消融实验验证了PRD整体框架和内部模块的有效性。 展开更多
关键词 异常检测 无监督学习 Prototype学习 知识蒸馏 预训练特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部