期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
旱涝灾害的遗传-神经网络集成预测方法研究 被引量:7
1
作者 吴建生 《广西科学》 CAS 2006年第3期203-206,211,共5页
利用遗传算法的全局搜索能力同时进化设计三层BP神经网络的结构和连接权,并以进化后的网络结构和连接权作为新的神经网络结构和初始连接权,再进行新一轮附加动量的BP神经网络训练,把训练后的结果简单平均集成,以此建立旱涝灾害的遗... 利用遗传算法的全局搜索能力同时进化设计三层BP神经网络的结构和连接权,并以进化后的网络结构和连接权作为新的神经网络结构和初始连接权,再进行新一轮附加动量的BP神经网络训练,把训练后的结果简单平均集成,以此建立旱涝灾害的遗传-神经网络集成预测新方法。应用该方法对广西桂林6月(主汛期1995~2005年)的降水量进行实例预测的结果表明,该方法的收敛速度快,预报精度高,易于操作,是一种具有较高应用价值的预测方法。 展开更多
关键词 旱涝灾害 预测遗传算法 神经网络集成
在线阅读 下载PDF
遗传优化的灰色神经网络模型比较研究 被引量:7
2
作者 袁景凌 李小燕 钟珞 《计算机工程与应用》 CSCD 北大核心 2010年第2期41-43,共3页
针对灰色系统结合RBF神经网络时算法存在局部最优和收敛性等问题,引入遗传算法来辅助优化灰色神经网络预测模型。利用具有的较强全局搜索能力,且收敛速度快的遗传算法对GM(1,1)模型参数λ进行高效求解,然后融合RBF神经网络和改进的灰色G... 针对灰色系统结合RBF神经网络时算法存在局部最优和收敛性等问题,引入遗传算法来辅助优化灰色神经网络预测模型。利用具有的较强全局搜索能力,且收敛速度快的遗传算法对GM(1,1)模型参数λ进行高效求解,然后融合RBF神经网络和改进的灰色GM(1,1)模型,构成两种不同结构的基于遗传算法的灰色RBF预测模型,一种是灰色RBF补偿预测模型GA-GRBF,另一种是灰色嵌入型GRBF模型。以某智能监控系统采集的风响应时程数据进行仿真分析,结果表明经过遗传算法优化的GRBF模型都要优于单一的GRBF模型,并且GA-GRBF模型建模简单,预测精度高,实用性强。 展开更多
关键词 GM(1 1)模型 径向基函数 基于遗传算法的灰色RBF预测模型 GA-GRBF模型 优化 残差补偿
在线阅读 下载PDF
基于时间序列分析的航站楼安检旅客流量预测 被引量:11
3
作者 冯霞 赵立强 《计算机工程与设计》 北大核心 2020年第4期1181-1187,共7页
对单位时间内通过安检的旅客流量进行预测是机场航站楼实时调控的重要依据,由此提出一种实时安检旅客流量预测方法,采用Wolf方法分析出安检旅客流量时间序列具有混沌特性;采用适用于混沌时间序列预测的遗传算法优化BP神经网络预测方法(G... 对单位时间内通过安检的旅客流量进行预测是机场航站楼实时调控的重要依据,由此提出一种实时安检旅客流量预测方法,采用Wolf方法分析出安检旅客流量时间序列具有混沌特性;采用适用于混沌时间序列预测的遗传算法优化BP神经网络预测方法(GABP)预测安检旅客流量;分别设定时间尺度为2 min、5 min和10 min等,分析不同时间尺度对安检旅客流量预测精度的影响。基于北京首都国际机场T3航站楼实际安检旅客流量数据的实验结果表明,采用GABP神经网络对以2 min为时间尺度的安检旅客流量预测能取得较好的预测精准度。 展开更多
关键词 安检旅客流量 相空间重构 Wolf方法 遗传算法优化BP神经网络预测方法 混沌时间序列 时间尺度
在线阅读 下载PDF
基于极差分析法与GA-ELM的电器连接器壳体注射成型工艺优化 被引量:9
4
作者 梅益 薛茂远 +1 位作者 唐芳艳 肖展开 《塑料工业》 CAS CSCD 北大核心 2021年第1期75-80,共6页
以某电器连接壳体为例,借助Moldflow软件对正交试验方案组合进行模拟,对正交试验模拟结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度为:保压时间>模具温度>注射时间>熔体温度>保压压力。极差分析得到的最优工... 以某电器连接壳体为例,借助Moldflow软件对正交试验方案组合进行模拟,对正交试验模拟结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度为:保压时间>模具温度>注射时间>熔体温度>保压压力。极差分析得到的最优工艺参数组合对应的翘曲变形量与正交试验方案中最小翘曲变形量相比降低了6.7%。关键点采用遗传算法优化后的预测模型(GA-ELM)对塑件翘曲变形量进行预测。由于传统极限学习算法(ELM)的权值和阈值随机产生,网络系统预测稳定性及精度较差,故通过GA全局寻优能力寻找最佳的权值和阈值,得到GA-ELM。选择正交试验前80%样本作为训练集训练ELM与GA-ELM模型,通过样本后20%作为测试集验证ELM与GA-ELM模型预测精度。对比分析可看到:使用GA-ELM预测模型比直接使用ELM预测模型预测结果有更高预测精度及稳定性。此GA-ELM模型可用来预测该塑件翘曲变形量。对同类模具设计优化提供一定的思路及理论参考。 展开更多
关键词 正交试验设计 MOLDFLOW 极差分析 极限学习算法 遗传算法优化后的预测模型
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
5
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1
6
作者 梅英 谭冠政 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu... To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 展开更多
关键词 PREDICTION CLASSIFICATION brain emotional learning genetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部