随着移动设备和物联网技术的普及,时空数据的收集和分析变得越来越重要。轨迹预测,尤其是实时轨迹预测,对于许多应用领域如智能交通和城市规划等至关重要。现有的轨迹预测方法往往无法在保证预测准确性的同时满足实时性的要求,且实时数...随着移动设备和物联网技术的普及,时空数据的收集和分析变得越来越重要。轨迹预测,尤其是实时轨迹预测,对于许多应用领域如智能交通和城市规划等至关重要。现有的轨迹预测方法往往无法在保证预测准确性的同时满足实时性的要求,且实时数据通常是不完整或带有噪声的,要求预测算法必须能够适应不完全的轨迹信息。基于此,提出了一种基于时空数据库的实时启发式轨迹预测模型(Real-time Heuristic Trajectory Prediction Based on Spatio-Temporal Databases,RHTP-STD)。RHTP-STD利用MobilityDB数据库平台存储和管理轨迹数据,通过图构建算法将轨迹数据转换为时空图。RHTP-STD采用启发式算法,融合历史和实时数据,快速预测移动对象的未来轨迹。实验结果表明,RHTP-STD在Argoverse数据集上的预测准确性和实时性均优于现有方法。讨论所提方法在不同应用场景中的适用性,提出了未来的研究方向。展开更多
文摘针对传统的神经网络模型因超参数众多,在实验中比对最优参数组合效率低下导致误差较大和反应速度慢的问题。本文提出一种基于北方苍鹰优化(Northern Goshawk Optimization,NGO)算法和双向门控循环单元神经网络(Bidirectional Gated Recurrent Unit, Bi-GRU)的船舶轨迹预测模型NGO-Bi-GRU(Northern Goshawk Optimization Bidirectional Gated Recurrent Unit)。利用NGO对Bi-GRU模型的学习率、隐藏节点和正则化系数进行寻优,然后将寻优得到的网络超参数代入Bi-GRU进行船舶轨迹预测。将该模型与长短时记忆神经网络(Long Short Term Memory, LSTM)和门控循环单元神经网络模型(Gated Recurrent Unit, GRU)以及使用该算法优化的长短期神经网络模型进行实验对比,将均方误差、均方根误差、平均绝对误差作为评价标准。结果表明,NGO-Bi-GRU模型在经度和纬度预测上误差较小、精确度较高且数值波动更加稳定。
文摘随着移动设备和物联网技术的普及,时空数据的收集和分析变得越来越重要。轨迹预测,尤其是实时轨迹预测,对于许多应用领域如智能交通和城市规划等至关重要。现有的轨迹预测方法往往无法在保证预测准确性的同时满足实时性的要求,且实时数据通常是不完整或带有噪声的,要求预测算法必须能够适应不完全的轨迹信息。基于此,提出了一种基于时空数据库的实时启发式轨迹预测模型(Real-time Heuristic Trajectory Prediction Based on Spatio-Temporal Databases,RHTP-STD)。RHTP-STD利用MobilityDB数据库平台存储和管理轨迹数据,通过图构建算法将轨迹数据转换为时空图。RHTP-STD采用启发式算法,融合历史和实时数据,快速预测移动对象的未来轨迹。实验结果表明,RHTP-STD在Argoverse数据集上的预测准确性和实时性均优于现有方法。讨论所提方法在不同应用场景中的适用性,提出了未来的研究方向。