期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
西安地铁双线隧道地表沉降预测模型研究 被引量:14
1
作者 佘芳涛 韩日美 +1 位作者 刘庚 邵生俊 《防灾减灾工程学报》 CSCD 2011年第5期560-566,共7页
针对西安地铁留核心土、上下半洞开挖、超前小导管注浆加固与水平钢撑锁脚的钢拱架和挂网喷层支护的饱和黄土隧道,根据现场地面沉降监测数据,分析了隧道右线、左线掌子面间隔30m开挖过程中洞顶地表沉降变形的历时变化规律,以及左、右线... 针对西安地铁留核心土、上下半洞开挖、超前小导管注浆加固与水平钢撑锁脚的钢拱架和挂网喷层支护的饱和黄土隧道,根据现场地面沉降监测数据,分析了隧道右线、左线掌子面间隔30m开挖过程中洞顶地表沉降变形的历时变化规律,以及左、右线单洞沉降槽和双线沉降槽的分布特征。结果表明,洞顶地表沉降变形可以划分为初期沉降变形、右线开挖主变形、左线开挖主变形及沉降变形稳定4个阶段;左、右线单洞沉降槽和双线沉降槽均可用高斯分布曲线拟合。基于沉降槽Peck公式及O’Reilly和New最大沉降与隧道埋深的关系,得到了饱和黄土隧道单洞与双洞地面沉降槽的宽度和最大沉降,以及右、左线隧道先后开挖单洞的沉降槽宽度比和最大沉降比。考虑双线隧道洞间距、左右洞先后开挖地层松动相互影响以及围岩饱和黄土固结变形的影响,提出了一种饱和黄土隧道双洞开挖施工引起地表沉降的预测模型,验证了该预测模型应用的可靠性。 展开更多
关键词 西安地铁 饱和黄土隧道 地面沉降槽 预测计算模型
在线阅读 下载PDF
基于图卷积网络的药物靶标关联预测算法 被引量:4
2
作者 徐国保 陈媛晓 王骥 《计算机应用》 CSCD 北大核心 2021年第5期1522-1526,共5页
传统的基于生物学实验的药物-靶标关联预测成本高、效率低,难以满足医药研发的需求。为了解决上述问题,提出一种新的基于图卷积网络的药物靶标关联预测(GCDTI)算法。GCDTI利用半监督学习方法将图卷积和自编码技术相结合,从而分别构建用... 传统的基于生物学实验的药物-靶标关联预测成本高、效率低,难以满足医药研发的需求。为了解决上述问题,提出一种新的基于图卷积网络的药物靶标关联预测(GCDTI)算法。GCDTI利用半监督学习方法将图卷积和自编码技术相结合,从而分别构建用于整合节点特征的编码层和用于预测全链接交互网络的解码层;同时使用图卷积技术建立潜在因子模型,并有效利用药物和靶标的高维属性信息进行端到端的学习。所提算法不需要对输入的特征信息进行任何预处理便可以将其与已知相互作用网络相结合,证明了该模型的图卷积层能够有效地融合输入数据与节点特征。与其他先进方法相比,GCDTI的预测精度和平均受试者工作特性(ROC)曲线下的面积(AUC)(0.924 6±0.004 8)最高,且具有较强的鲁棒性。实验结果表明:当需要预测大量的药物和靶标数据的关联关系时,利用端到端学习的模型架构的GCDTI有潜力成为一种可靠的预测方法。 展开更多
关键词 药物-靶标关联预测 谱图卷积 计算预测模型 自编码 k折交叉验证
在线阅读 下载PDF
Calculation of maximum surface settlement induced by EPB shield tunnelling and introducing most effective parameter 被引量:6
3
作者 Sayed Rahim Moeinossadat Kaveh Ahangari Kourosh Shahriar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3273-3283,共11页
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E... This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters. 展开更多
关键词 surface settlement shallow tunnel tunnel boring machine (TBM) multiple regression (MR) adaptive neuro-fuzzyinference system (ANFIS) cosine amplitude method (CAM)
在线阅读 下载PDF
Predicting configuration performance of modular product family using principal component analysis and support vector machine 被引量:1
4
作者 张萌 李国喜 +1 位作者 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS 2014年第7期2701-2711,共11页
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n... A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators. 展开更多
关键词 design configuration performance prediction MODULARITY principal component analysis support vector machine
在线阅读 下载PDF
Comparisons between unsteady sediment-transport modeling 被引量:2
5
作者 Lahouari Benayada Mahmoud Hasbaia 《Journal of Central South University》 SCIE EI CAS 2013年第2期536-540,共5页
The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance ... The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times. 展开更多
关键词 friction resistance bed load suspended load mobile-bed modeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部