期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于PMU的预测型振荡解列初步研究 被引量:14
1
作者 周良松 夏成军 +1 位作者 彭波 胡会骏 《继电器》 CSCD 北大核心 2001年第3期9-13,共5页
提出了基于同步相量测量单元的预测型振荡解列方法。振荡中心两侧母线电压的相角差反映了功角差 ,利用该相角差的变化速度及符号 ,可以判定是同步振荡还是异步振荡以及滑差的情况 ,并实现预测解列功能。
关键词 同步相量测量单元 预测性振荡 电力系统 暂态稳定分析 PMU
在线阅读 下载PDF
客车侧翻一步碰撞算法中初始解预测方法的研究 被引量:2
2
作者 王童 那景新 张苹苹 《汽车工程》 EI CSCD 北大核心 2015年第8期892-896,共5页
在作者先前开发的客车侧翻一步碰撞算法的基础上,提出一种基于结构变形标准模板和节点坐标插值的初始解预测方法,以提高其计算效率。通过对12m公路客车典型车身段模型进行模拟,并与原始侧翻一步碰撞算法和侧翻试验结果对比,验证了该方... 在作者先前开发的客车侧翻一步碰撞算法的基础上,提出一种基于结构变形标准模板和节点坐标插值的初始解预测方法,以提高其计算效率。通过对12m公路客车典型车身段模型进行模拟,并与原始侧翻一步碰撞算法和侧翻试验结果对比,验证了该方法的有效性。 展开更多
关键词 客车侧翻一步碰撞算法 结构变形标准模板 节点坐标插值 初始预测
在线阅读 下载PDF
基于改进的Newmark-β法重载列车车钩纵向力仿真研究 被引量:6
3
作者 武承龙 董昱 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第1期211-219,共9页
重载列车运行过程中过大的车钩纵向力一直是制约重载列车发展的瓶颈,空气制动不同步是产生列车纵向冲动的根源,导致车体挤压车钩形成车钩力。传统的经过制动特性试验采集车钩力的方法耗时耗力,为了经济地获取重载列车在不同线路上运行... 重载列车运行过程中过大的车钩纵向力一直是制约重载列车发展的瓶颈,空气制动不同步是产生列车纵向冲动的根源,导致车体挤压车钩形成车钩力。传统的经过制动特性试验采集车钩力的方法耗时耗力,为了经济地获取重载列车在不同线路上运行时车钩力的大小,将Newmark-β法应用于重载列车车钩纵向力的仿真分析中。由于列车纵向动力学方程是非常复杂的非线性方程,传统方法为了保证计算精度而采用大量迭代运算,耗时长效率低。基于增量思想改进Newmark-β法,通过引入预测解直接对非线性方程进行处理,然后对预测解进行校正,最终得到收敛的近似解。算例结果表明,改进算法在保证了计算精度的同时计算效率更高,更适用于长大编组重载列车车钩纵向力的仿真计算和分析。 展开更多
关键词 重载列车 NEWMARK-Β法 车钩缓冲器 纵向力 预测解
在线阅读 下载PDF
利用自建的活性肽数据库搜寻食物蛋白质中潜在的生物活性肽 被引量:16
4
作者 黎观红 乐国伟 +1 位作者 施用晖 乐小良 《食品与发酵工业》 CAS CSCD 北大核心 2004年第1期85-88,共4页
利用MicrosoftOffice 2 0 0 0中的Access数据库软件建立了一个生物活性肽数据库 ,该数据库系统由生物活性肽序列及其相关信息子库、常见食物蛋白质序列子库和蛋白水解酶信息子库构成。同时数据库中引入了序列比对和酶解位点预测等 2个... 利用MicrosoftOffice 2 0 0 0中的Access数据库软件建立了一个生物活性肽数据库 ,该数据库系统由生物活性肽序列及其相关信息子库、常见食物蛋白质序列子库和蛋白水解酶信息子库构成。同时数据库中引入了序列比对和酶解位点预测等 2个自编程序 ,利用该程序可分别用来寻找蛋白质中存在的生物活性肽片段或可能含有具有某种功能的生物活性肽的蛋白质及寻找把蛋白质中潜在的生物活性肽从该蛋白质中释放出来的适宜的酶。该数据库还具有数据的输入、修改删除、查询检索等功能。 展开更多
关键词 食物 蛋白质 生物活性肽 活性肽数据库 营养学 序列比对 位点预测
在线阅读 下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:7
5
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
在线阅读 下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:4
6
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
在线阅读 下载PDF
Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors 被引量:24
7
作者 唐圣金 郭晓松 +3 位作者 于传强 周志杰 周召发 张邦成 《Journal of Central South University》 SCIE EI CAS 2014年第12期4509-4517,共9页
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad... Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction. 展开更多
关键词 remaining useful life Wiener based degradation process measurement error nonlinear maximum likelihood estimation Bayesian method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部