期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进预测树的超光谱遥感图像无损压缩方法 被引量:1
1
作者 夏豪 张荣 《电子与信息学报》 EI CSCD 北大核心 2009年第4期813-817,共5页
该文在传统预测树方法的基础上提出一种改进方法,该方法定义一个幅度拉伸因子来表达相邻波段的局部灰度变化,通过比较局部上下文梯度来估算该幅度因子,并用它对当前的预测值进行修正。此外,还结合AVIRIS超光谱遥感图像的相关性特性提出... 该文在传统预测树方法的基础上提出一种改进方法,该方法定义一个幅度拉伸因子来表达相邻波段的局部灰度变化,通过比较局部上下文梯度来估算该幅度因子,并用它对当前的预测值进行修正。此外,还结合AVIRIS超光谱遥感图像的相关性特性提出一种谱间预测和空间预测相结合的综合预测无损压缩方案,在不同波段范围内采用可选的预测方式进行预测。在AVIRIS遥感图像数据集上的实验结果表明,该方案在计算复杂度较低的情况下,能够更好地消除冗余信息,具有良好的压缩性能。 展开更多
关键词 遥感 超光谱 无损压缩 预测树
在线阅读 下载PDF
面向光伏发电的模式预测树模型 被引量:2
2
作者 董亚东 郭华平 +2 位作者 吴双惠 王兆庆 范明 《可再生能源》 CAS 北大核心 2014年第3期253-258,共6页
文章将模式预测树引入到光伏发电预测中,提出了一种面向光伏发电的模式预测树模型(PGMT)。与传统的神经网络不同,PGMT将树模型与线性回归模型相结合,预测时输入信息沿着某条路径到达叶结点,该叶结点使用线性回归模型预测相应的发电量。... 文章将模式预测树引入到光伏发电预测中,提出了一种面向光伏发电的模式预测树模型(PGMT)。与传统的神经网络不同,PGMT将树模型与线性回归模型相结合,预测时输入信息沿着某条路径到达叶结点,该叶结点使用线性回归模型预测相应的发电量。该方法有效地避免了标准线性回归模型对数据的线性要求,同时保留了线性模型的可解释性。利用在某光伏电站的数据集上的实验结果表明,PGMT较之于神经网络保留了很好的可解释性,表现出更高的预测准确性。 展开更多
关键词 预测模型模式 线性回归 发电功率预测 剪枝
在线阅读 下载PDF
An Expert Judgment-based Prediction Tool for Developmental and R eproductive Toxicity(DART)
3
作者 LI Kangning ZHENG Yuting +7 位作者 Jane ROSE WU Shengde LI Bin Vatsal MEHTA Ashley MUDD George DASTON YU Yang WANG Ying 《生态毒理学报》 北大核心 2025年第2期77-91,共15页
Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to asse... Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China. 展开更多
关键词 developmental and reproductive toxicity decision tree prediction tool expert judgment new chemical management
在线阅读 下载PDF
基于微气象微地形的北京地区输电线路覆冰预测技术 被引量:10
4
作者 张睿哲 周恺 +6 位作者 赵留学 谭磊 李鸿达 王雅妮 蔡瀛淼 李春生 陈帅 《科学技术与工程》 北大核心 2022年第33期14744-14751,共8页
实现输电线路覆冰预测是保障北京地区输电线路在覆冰季正常运行的关键技术。针对北京地区输电线路覆冰预测技术研究,采用皮尔逊相关系数和灰色系统关联度分析方法,利用历史数据研究覆冰厚度与微气象微地形的相关性,得出湿度、坡向、风... 实现输电线路覆冰预测是保障北京地区输电线路在覆冰季正常运行的关键技术。针对北京地区输电线路覆冰预测技术研究,采用皮尔逊相关系数和灰色系统关联度分析方法,利用历史数据研究覆冰厚度与微气象微地形的相关性,得出湿度、坡向、风向和高程对覆冰厚度影响程度较高;通过多种环境特征要素组合构建基于极限随机树模型和灰色系统预测模型的覆冰预测模型,对比不同模型的预测结果的均方根误差(root mean square error,RMSE),得出由湿度和风向组合构建的灰色系统覆冰预测模型效果最佳。研究结果表明,与同类预测方法相比考虑了微地形对覆冰厚度预测的影响,得到北京地区输电线路覆冰厚度相关性较高的环境因素为湿度、坡向、风向和高程;对比多种环境要素构建的覆冰预测模型,湿度和风向组合的灰色系统预测模型的均方根误差明显优于其他组合,可以有效实现北京地区输电线路覆冰预测。 展开更多
关键词 输电线路 覆冰 微气象 微地形 相关性分析 极限随机预测模型 灰色系统预测模型
在线阅读 下载PDF
基于迭代训练的Web Service混合协同过滤推荐模型 被引量:2
5
作者 王斌斌 周作建 +1 位作者 过洁 潘金贵 《计算机研究与发展》 EI CSCD 北大核心 2013年第S2期153-162,共10页
伴随着互联网技术的日益发展,海量数据的集成融合促进了大数据技术的广泛应用,尤其以面向服务为核心的Web Service技术被普遍用来提供新型互联网服务,这使得针对服务提供商及个人用户设计一种基于Web Service的个性化服务推荐系统变得... 伴随着互联网技术的日益发展,海量数据的集成融合促进了大数据技术的广泛应用,尤其以面向服务为核心的Web Service技术被普遍用来提供新型互联网服务,这使得针对服务提供商及个人用户设计一种基于Web Service的个性化服务推荐系统变得十分必要.因此,提出一种基于混合协同过滤技术进行服务质量(QoS)预测的服务推荐模型.该模型利用迭代训练的思想,不断提升服务质量预测值的准确率,并通过基于预测树(PTree)的性能优化策略,有效地降低了迭代过程的运行时间.基于一个包含150万条Web Service调用信息的数据集,开展了一系列的对比分析实验.实验结果表明,相比于其他一些推荐模型,所提出的基于迭代训练的混合协同过滤推荐模型在消耗同等资源的情况下,能够有效地降低预测值的误差,提升模型整体的预测准确率. 展开更多
关键词 Web服务推荐 QOS 协同过滤 迭代 预测树
在线阅读 下载PDF
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
6
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部