Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to asse...Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China.展开更多
实现输电线路覆冰预测是保障北京地区输电线路在覆冰季正常运行的关键技术。针对北京地区输电线路覆冰预测技术研究,采用皮尔逊相关系数和灰色系统关联度分析方法,利用历史数据研究覆冰厚度与微气象微地形的相关性,得出湿度、坡向、风...实现输电线路覆冰预测是保障北京地区输电线路在覆冰季正常运行的关键技术。针对北京地区输电线路覆冰预测技术研究,采用皮尔逊相关系数和灰色系统关联度分析方法,利用历史数据研究覆冰厚度与微气象微地形的相关性,得出湿度、坡向、风向和高程对覆冰厚度影响程度较高;通过多种环境特征要素组合构建基于极限随机树模型和灰色系统预测模型的覆冰预测模型,对比不同模型的预测结果的均方根误差(root mean square error,RMSE),得出由湿度和风向组合构建的灰色系统覆冰预测模型效果最佳。研究结果表明,与同类预测方法相比考虑了微地形对覆冰厚度预测的影响,得到北京地区输电线路覆冰厚度相关性较高的环境因素为湿度、坡向、风向和高程;对比多种环境要素构建的覆冰预测模型,湿度和风向组合的灰色系统预测模型的均方根误差明显优于其他组合,可以有效实现北京地区输电线路覆冰预测。展开更多
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc...Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.展开更多
文摘Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China.
文摘实现输电线路覆冰预测是保障北京地区输电线路在覆冰季正常运行的关键技术。针对北京地区输电线路覆冰预测技术研究,采用皮尔逊相关系数和灰色系统关联度分析方法,利用历史数据研究覆冰厚度与微气象微地形的相关性,得出湿度、坡向、风向和高程对覆冰厚度影响程度较高;通过多种环境特征要素组合构建基于极限随机树模型和灰色系统预测模型的覆冰预测模型,对比不同模型的预测结果的均方根误差(root mean square error,RMSE),得出由湿度和风向组合构建的灰色系统覆冰预测模型效果最佳。研究结果表明,与同类预测方法相比考虑了微地形对覆冰厚度预测的影响,得到北京地区输电线路覆冰厚度相关性较高的环境因素为湿度、坡向、风向和高程;对比多种环境要素构建的覆冰预测模型,湿度和风向组合的灰色系统预测模型的均方根误差明显优于其他组合,可以有效实现北京地区输电线路覆冰预测。
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(71210001,51338008)supported by the National Natural Science Foundation of ChinaProject supported by World Capital Cities Smooth Traffic Collaborative Innovation Center and Singapore National Research Foundation Under Its Campus for Research Excellence and Technology Enterprise(CREATE)Programme
文摘Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.