期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于季节分解组合模型的全国航空货运量预测
1
作者 石学刚 邬林江 范棋航 《科学技术与工程》 北大核心 2025年第13期5655-5661,共7页
为应对日益复杂多变的市场环境带来的航空货运市场供需不平衡问题,提高航空货运量预测精度对于航线规划和供应链优化等具有重要意义。首先基于2000年1月—2022年12月的月度航空货运数据作为训练集,通过季节性分解法(seasonal and trend ... 为应对日益复杂多变的市场环境带来的航空货运市场供需不平衡问题,提高航空货运量预测精度对于航线规划和供应链优化等具有重要意义。首先基于2000年1月—2022年12月的月度航空货运数据作为训练集,通过季节性分解法(seasonal and trend decomposition using loess, STL)捕捉季节性波动规律和长期变化趋势,然后基于深度学习的时间序列预测模型(long short-term memory-support vector regression, LSTM-SVR)来拟合因突发事件下的货运量引起的非线性变化,最后基于2023年全年的月度数据对预测模型进行检验。结果表明:基于季节和组合预测模型(STL-SVR-LSTM)相比于传统方法如自回归移动平均(autoregressive integrated moving average, ARIMA)、SVR或LSTM在突发事件下对航空货运量的预测更为准确。2023年的数据检验得出季节和组合预测模型均方根误差和平均绝对百分比误差分别为3.53和3.53%,拟合优度为0.79,LSTM模型预测结果次优,均方根误差和平均绝对百分比误差分别为5.66和7.73%,拟合优度为0.58,显著优于其他两种传统预测模型。可见该预测模型能适应复杂环境下的航空货运量预测,有助于在突发事件下为企业经营和增强供应链的稳定提供参考建议。 展开更多
关键词 航空运输 月度货运量预测 STL-SVR-LSTM模型 突发事件 预测方法优化
在线阅读 下载PDF
基于时间序列分析的航站楼安检旅客流量预测 被引量:11
2
作者 冯霞 赵立强 《计算机工程与设计》 北大核心 2020年第4期1181-1187,共7页
对单位时间内通过安检的旅客流量进行预测是机场航站楼实时调控的重要依据,由此提出一种实时安检旅客流量预测方法,采用Wolf方法分析出安检旅客流量时间序列具有混沌特性;采用适用于混沌时间序列预测的遗传算法优化BP神经网络预测方法(G... 对单位时间内通过安检的旅客流量进行预测是机场航站楼实时调控的重要依据,由此提出一种实时安检旅客流量预测方法,采用Wolf方法分析出安检旅客流量时间序列具有混沌特性;采用适用于混沌时间序列预测的遗传算法优化BP神经网络预测方法(GABP)预测安检旅客流量;分别设定时间尺度为2 min、5 min和10 min等,分析不同时间尺度对安检旅客流量预测精度的影响。基于北京首都国际机场T3航站楼实际安检旅客流量数据的实验结果表明,采用GABP神经网络对以2 min为时间尺度的安检旅客流量预测能取得较好的预测精准度。 展开更多
关键词 安检旅客流量 相空间重构 Wolf方法 遗传算法优化BP神经网络预测方法 混沌时间序列 时间尺度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部