基于变量预测模型的分类识别(Variable predictive model-based class discriminate,VPMCD)方法是一种新的分类识别方法,但模型类型的选择存在主观性。为了解决VPMCD方法应用于机械故障诊断过程中的模型选择问题,结合遗传算法的全局优...基于变量预测模型的分类识别(Variable predictive model-based class discriminate,VPMCD)方法是一种新的分类识别方法,但模型类型的选择存在主观性。为了解决VPMCD方法应用于机械故障诊断过程中的模型选择问题,结合遗传算法的全局优化能力,提出了基于GA-VPMCD(Genetic algorithm and variable predictive model based class discriminate)智能诊断方法。首先通过样本训练建立多个弱VPM(Variable predictive model),然后采用遗传算法优化各个弱VPM的权值,得到最优权值矩阵,最后用最优权值矩阵加权融合测试样本的弱VPM特征变量预测值,得到最佳特征变量预测值,并以误差平方和最小为辨别函数分类识别故障类型。通过GA-VPMCD方法在滚动轴承故障智能诊断中的应用实验验证了基于GA-VPMCD的故障智能诊断方法能有效地提高诊断精度和诊断系统的鲁棒性。展开更多
针对多变量预测模型模式识别方法中的最小二乘拟合可能出现病态的问题,提出了基于岭回归的多变量预测模型(Ridge regression-Variable Predictive Model based Class Discriminate,RVPMCD)分类方法,该方法通过引入岭参数,降低其均方拟...针对多变量预测模型模式识别方法中的最小二乘拟合可能出现病态的问题,提出了基于岭回归的多变量预测模型(Ridge regression-Variable Predictive Model based Class Discriminate,RVPMCD)分类方法,该方法通过引入岭参数,降低其均方拟合误差,减小自变量间复共线性关系对参数估计的影响,改善了原方法中最小二乘回归拟合参数失真的现象,从而有望建立更加准确的预测模型。对滚动轴承的振动信号提取特征值,组成特征向量,采用RVPMCD方法对训练样本建立预测模型,利用RVPMCD所建立的预测模型进行模式识别。实验分析结果表明,基于岭回归的多变量预测模型分类方法可以更有效地对滚动轴承的工作状态和故障类型进行识别。展开更多
文摘基于变量预测模型的分类识别(Variable predictive model-based class discriminate,VPMCD)方法是一种新的分类识别方法,但模型类型的选择存在主观性。为了解决VPMCD方法应用于机械故障诊断过程中的模型选择问题,结合遗传算法的全局优化能力,提出了基于GA-VPMCD(Genetic algorithm and variable predictive model based class discriminate)智能诊断方法。首先通过样本训练建立多个弱VPM(Variable predictive model),然后采用遗传算法优化各个弱VPM的权值,得到最优权值矩阵,最后用最优权值矩阵加权融合测试样本的弱VPM特征变量预测值,得到最佳特征变量预测值,并以误差平方和最小为辨别函数分类识别故障类型。通过GA-VPMCD方法在滚动轴承故障智能诊断中的应用实验验证了基于GA-VPMCD的故障智能诊断方法能有效地提高诊断精度和诊断系统的鲁棒性。
文摘针对多变量预测模型模式识别方法中的最小二乘拟合可能出现病态的问题,提出了基于岭回归的多变量预测模型(Ridge regression-Variable Predictive Model based Class Discriminate,RVPMCD)分类方法,该方法通过引入岭参数,降低其均方拟合误差,减小自变量间复共线性关系对参数估计的影响,改善了原方法中最小二乘回归拟合参数失真的现象,从而有望建立更加准确的预测模型。对滚动轴承的振动信号提取特征值,组成特征向量,采用RVPMCD方法对训练样本建立预测模型,利用RVPMCD所建立的预测模型进行模式识别。实验分析结果表明,基于岭回归的多变量预测模型分类方法可以更有效地对滚动轴承的工作状态和故障类型进行识别。