期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
回归分析在大桥沉降监测预测中的应用 被引量:14
1
作者 孙清娟 师军良 《测绘通报》 CSCD 北大核心 2016年第7期90-93,共4页
在对多期桥梁沉降变形监测数据预处理、观测数据粗差剔除方法分析研究的基础上,提出了基于代表性沉降数据、采用回归分析法对大桥沉降形变进行预测的方法,并在东明黄河公路大桥沉降变形监测项目中得到了成功应用,结果验证了该方法的有效... 在对多期桥梁沉降变形监测数据预处理、观测数据粗差剔除方法分析研究的基础上,提出了基于代表性沉降数据、采用回归分析法对大桥沉降形变进行预测的方法,并在东明黄河公路大桥沉降变形监测项目中得到了成功应用,结果验证了该方法的有效性,研究结论可为桥梁变形监测数据处理及预测预报提供借鉴。 展开更多
关键词 沉降监测 预测:回归分析
在线阅读 下载PDF
Soft sensor design for hydrodesulfurization process using support vector regression based on WT and PCA 被引量:2
2
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期511-521,共11页
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ... A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR. 展开更多
关键词 soft sensor support vector regression principal component analysis wavelet transform hydrodesulfurization process
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部