本文使用加拿大气候模拟与分析中心(Canadian Center for Climate Modeling and Analysis,CCCma)的耦合模式预报产品,应用以信息论为基础的可预报性理论框架,诊断、分析了耦合模式中Madden-Julian Oscillation(MJO)的预报率,包括实际预...本文使用加拿大气候模拟与分析中心(Canadian Center for Climate Modeling and Analysis,CCCma)的耦合模式预报产品,应用以信息论为基础的可预报性理论框架,诊断、分析了耦合模式中Madden-Julian Oscillation(MJO)的预报率,包括实际预报技巧和潜在预报率,以及热带季节内尺度变率(Intraseasonal Variability,ISV)最可预报模态的空间分布。并在此基础上讨论了不同时间尺度平均对MJO预报技巧的影响。结果表明:本文使用的2个耦合模式中,MJO的预报技巧与目前全球主要使用的预报模式相近,约为10d。潜在可预报技巧可以达到30d以上。随着时间尺度从日平均增加到10d平均,MJO的实际预报技巧与潜在可预报技巧都相应提高,尤其是潜在可预报技巧的提高更加显著。进一步分析发现,影响实际预报技巧的一个重要因素是初始条件MJO信号的强弱,当MJO信号很强时,预报技巧较高,反之则较低。本文最后分析了模式中ISV最可预报模态的空间分布,并讨论了如何利用这种最可预报空间分布提高ISV的实际预报技巧。展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
文摘本文使用加拿大气候模拟与分析中心(Canadian Center for Climate Modeling and Analysis,CCCma)的耦合模式预报产品,应用以信息论为基础的可预报性理论框架,诊断、分析了耦合模式中Madden-Julian Oscillation(MJO)的预报率,包括实际预报技巧和潜在预报率,以及热带季节内尺度变率(Intraseasonal Variability,ISV)最可预报模态的空间分布。并在此基础上讨论了不同时间尺度平均对MJO预报技巧的影响。结果表明:本文使用的2个耦合模式中,MJO的预报技巧与目前全球主要使用的预报模式相近,约为10d。潜在可预报技巧可以达到30d以上。随着时间尺度从日平均增加到10d平均,MJO的实际预报技巧与潜在可预报技巧都相应提高,尤其是潜在可预报技巧的提高更加显著。进一步分析发现,影响实际预报技巧的一个重要因素是初始条件MJO信号的强弱,当MJO信号很强时,预报技巧较高,反之则较低。本文最后分析了模式中ISV最可预报模态的空间分布,并讨论了如何利用这种最可预报空间分布提高ISV的实际预报技巧。
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.