期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN的高速铁路侵限异物特征快速提取算法 被引量:39
1
作者 王洋 余祖俊 +1 位作者 朱力强 郭保青 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第5期1267-1275,共9页
高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降... 高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降的问题,提出将卷积层的卷积核进行预先训练;最后为防止因全连接而导致的对称性特征提取,提出加入稀疏性参数的快速特征提取算法。改进后的卷积神经网络,在保证准确率的基础上加快了计算速度,同时满足了实时性和高准确率的要求。实验表明处理单幅图像的速度为0.15 s,准确率为99.5%。 展开更多
关键词 异物识别 卷积神经网络 预先训练卷积核 快速特征提取 稀疏编码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部