期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
“预习教学”与培养学生能力 被引量:1
1
作者 程伟 《教育与职业》 北大核心 1996年第12期11-11,共1页
关键词 预习教学 学生 能力培养 预习方法 教学过程 自学能力 教学质量
在线阅读 下载PDF
怎样指导学生预习 被引量:1
2
作者 程学林 《教学与管理(中学版)》 1997年第5期25-25,共1页
怎样指导学生预习●安徽省怀宁县程学林预习,有助于学生思维能力的全面发展,又有助于学生独立学习能力的培养,历来为教育行家们所提倡,也是当前推行素质教育的好形式。如何指导学生掌握良好的预习方法呢?一、习题式预习法。这种预... 怎样指导学生预习●安徽省怀宁县程学林预习,有助于学生思维能力的全面发展,又有助于学生独立学习能力的培养,历来为教育行家们所提倡,也是当前推行素质教育的好形式。如何指导学生掌握良好的预习方法呢?一、习题式预习法。这种预习方法,就是把课本上的知识通过一定... 展开更多
关键词 预习方法 预习笔记 预习能力 预习习惯 新教材 提纲式 具体做法 教师的指导性 怀宁县 体系结构
在线阅读 下载PDF
一项特别的预习作业
3
作者 陈先富 《中学语文教学》 2006年第2期48-49,共2页
关键词 预习作业 预习方法 中学 语文 独立思考
在线阅读 下载PDF
Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques 被引量:30
4
作者 WANG Shi-ming ZHOU Jian +3 位作者 LI Chuan-qi Danial Jahed ARMAGHANI LI Xi-bing Hani SMITRI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期527-542,共16页
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ... Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods. 展开更多
关键词 ROCKBURST hard rock PREDICTION BAGGING BOOSTING ensemble learning
在线阅读 下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
5
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部